Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 15830, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982145

ABSTRACT

Demequina, commonly found in coastal and marine environments, represents a genus of Actinomycetes. In this study, strains Demequina PMTSA13T and OYTSA14 were isolated from the rhizosphere of Capsicum annuum, leading to the discovery of a novel species, Demequina capsici. Bacteria play a significant role in plant growth, yet there have been no reports of the genus Demequina acting as plant growth-promoting bacteria (PGPB). Comparative genomics analysis revealed ANI similarity values of 74.05-80.63% for PMTSA13T and 74.02-80.54% for OYTSA14, in comparison to various Demequina species. The digital DNA-DNA hybridization (dDDH) values for PMTSA13T ranged from 19 to 39%, and 19.1-38.6% for OYTSA14. Genome annotation revealed the presence of genes associated with carbohydrate metabolism and transport, suggesting a potential role in nutrient cycling and availability for plants. These strains were notably rich in genes related to 'carbohydrate metabolism and transport (G)', according to their Cluster of Orthologous Groups (COG) classification. Additionally, both strains were capable of producing auxin (IAA) and exhibited enzymatic activities for cellulose degradation and catalase. Furthermore, PMTSA13T and OYTSA14 significantly induced the growth of Arabidopsis thaliana seedlings primarily attributed to their capacity to produce IAA, which plays a crucial role in stimulating plant growth and development. These findings shed light on the potential roles of Demequina strains in plant-microbe interactions and agricultural applications. The type strain is Demequina capsici PMTSA13T (= KCTC 59028T = GDMCC 1.4451T), meanwhile OYTSA14 is identified as different strains of Demequina capsici.


Subject(s)
Capsicum , Phylogeny , Rhizosphere , Capsicum/microbiology , Capsicum/growth & development , Soil Microbiology , Actinobacteria/genetics , Actinobacteria/isolation & purification , Actinobacteria/classification , RNA, Ribosomal, 16S/genetics , Genome, Bacterial , Plant Development
2.
Plant Physiol Biochem ; 207: 108415, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324955

ABSTRACT

Salinization of land is globally increasing due to climate change, and salinity stress is an important abiotic stressor that adversely affects agricultural productivity. In this study, we assessed a halotolerant endophytic bacterium, Pseudoxanthomonas sp. JBR18, for its potential as a plant growth-promoting agent with multiple beneficial properties. The strain exhibited tolerance to sodium chloride concentration of up to 7.5 % in the R2A medium. In vitro evaluation revealed that strain JBR18 possessed proteolytic, protease (EC 3.4), and cellulase (EC 3.2.1.4) activities, as well as the ability to produce indole-acetic acid, proline, and exopolysaccharides. Compared with the controls, co-cultivation of Arabidopsis seedlings with the strain JBR18 improved plant growth, rosette size, shoot and root fresh weight, and chlorophyll content under salinity stress. Moreover, JBR18-inoculated seedlings showed lower levels of malondialdehyde, reactive oxygen species, and Na+ uptake into plant cells under salt stress but higher levels of K+. Additionally, seedlings inoculated with JBR18 exhibited a delayed response time and quantity of salt-responsive genes RD29A, RD29B, RD20, RD22, and KIN1 under salt stress. These multiple effects suggest that Pseudoxanthomonas sp. JBR18 is a promising candidate for mitigating the negative impacts of salinity stress on plant growth. Our findings may assist in future efforts to develop eco-friendly strategies for managing abiotic stress and enhancing plant tolerance to salt stress.


Subject(s)
Arabidopsis , Seedlings , Seedlings/physiology , Arabidopsis/genetics , Salt Tolerance , Bacteria , Stress, Physiological/genetics
3.
Sci Rep ; 13(1): 17767, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853022

ABSTRACT

A rod-shaped, motile, Gram-negative bacterial strain named DM-R-R2A-13T was isolated from the plant Cannabis sativa L. 'Cheungsam'. The phylogenetic analysis of the 16S rRNA gene sequence revealed that strain DM-R-R2A-13T belongs to the family Oxalobacteraceae and is closely related to members of the genus Massilia, with Massilia flava (97.58% sequence similarity) and Massilia armeniaca (97.37% sequence similarity) being the closest members. The digital DNA-DNA hybridization (dDDH) values between strain DM-R-R2A-13T and Massilia flava CGMCC 1.10685T and Massilia armeniaca ZMN-3Twere 22.2% and 23.3%, while the average nucleotide identity (ANI) values were 78.85% and 79.63%, respectively. The DNA G+C content was measured to be 64.6 mol%. Moreover, the bacterium was found to contain polyhydroxyalkanoate (PHA) granules based on transmission electron microscopy, indicating its potential to produce bioplastic. Genome annotation revealed the presence of PHA synthase genes (phaC, phaR, phaP, and phaZ), and the biopolymer was identified as poly-3-hydroxybutyrate (PHB) based on nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) analyses. Using maltose as a carbon source, the strain produced PHB of up to 58.06% of its dry cell weight. Based on the phenotypic, chemotaxonomic, and phylogenetic characteristics, it has been determined that DM-R-R2A-13T represents a novel species belonging to the genus Massilia. As such, the name Massilia endophytica sp. nov. is proposed for this newly identified species. The type strain is DM-R-R2A-13T (= KCTC 92072T = GDMCC 1.2920T).


Subject(s)
Cannabis , Oxalobacteraceae , Fatty Acids/analysis , Phospholipids/chemistry , Cannabis/genetics , Ubiquinone/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Soil Microbiology , Oxalobacteraceae/genetics , Hydroxybutyrates/analysis , Biopolymers
4.
Food Microbiol ; 116: 104364, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689426

ABSTRACT

The chemotaxonomic diversity of 20 Lactiplantibacillus plantarum strains was investigated using non-targeted metabolite profiling under different culture conditions. Multivariate and metabolic pathway analyses based on GC-MS and LC-MS/MS datasets showed that amino acid metabolism, especially 2-hydroxy acids, was enriched under aerobic conditions (AE), whereas fatty acid & sugar metabolism was increased under anaerobic conditions (AN). Based on the metabolite profiles, L. plantarum strains were clustered into three main groups (A, B, and C). Overall, 79 and 83 significantly discriminant metabolites were characterized as chemical markers of AE and AN growth conditions, respectively. Notably, alcohols were more abundant in group A whereas amino acids, peptides, purines, and pyrimidines were significantly higher in group C. 2-hydroxy acids and oxylipins biosynthesized through amino acid and fatty acid metabolism, respectively, were more abundant in groups A and B. Furthermore, we observed a strong correlation between the chemical diversity of L. plantarum groups and their antioxidant activity from metabolite extracts. We propose a non-targeted metabolomic workflow to comprehensively characterize the chemodiversity of L. plantarum strain under different culture conditions, which may help reveal specific biomarkers of individual strains depending on the culture conditions.


Subject(s)
Amino Acids , Tandem Mass Spectrometry , Anaerobiosis , Chromatography, Liquid , Hydroxy Acids , Fatty Acids
5.
J Microbiol Biotechnol ; 33(10): 1292-1298, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37528562

ABSTRACT

PAMB 00755T, a bacterial strain, was isolated from Korean fir leaves. The strain exhibits yellow colonies and consists of Gram-negative, non-motile, short rods or ovoid-shaped cells. It displays optimal growth conditions at 20°C, 0% NaCl, and pH 6.0. Results of 16S rRNA gene-based phylogenetic analyses showed that strain PAMB 00755T was most closely related to Sphingomonas chungangi MAH-6T (97.7%) and Sphingomonas polyaromaticivorans B2-7T (97.4%), and ≤96.5% sequence similarity to other members of the genus Sphingomonas. The values of average nucleotide identity (79.9-81.3%), average amino acid identity (73.3-75.9%), and digital DNA-DNA hybridization (73.3-75.9%) were significantly lower than the threshold values for species boundaries; these overall genome-related indexes (OGRI) analyses indicated that the strain represents a novel species. Genomic analysis revealed that the strain has a 4.4-Mbp genome encoding 4,083 functional genes, while the DNA G+C content of the whole genome is 66.1%. The genome of strain PAMB 00755T showed a putative carotenoid biosynthetic cluster responsible for its antioxidant activity. The respiratory quinone was identified as ubiquinone 10 (Q-10), while the major fatty acids in the profile were identified as C18:1ω7c and/or C18:1ω6c (summed feature 8). The major polar lipids of strain PAMB 00755T were diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, and phosphatidylcholine. Based on a comprehensive analysis of genomic, phenotypic, and chemotaxonomic characteristics, we proposed the name Sphingomonas abietis sp. nov. for this novel species, with PAMB 00755T as the type strain (= KCTC 92781T = GDMCC 1.3779T).


Subject(s)
Phospholipids , Sphingomonas , Phospholipids/chemistry , Sphingomonas/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Fatty Acids/chemistry , Republic of Korea , Bacterial Typing Techniques
6.
J Microbiol Biotechnol ; 33(10): 1317-1328, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37435870

ABSTRACT

Green tea (GT) polyphenols undergo extensive metabolism within gastrointestinal tract (GIT), where their derivatives compounds potentially modulate the gut microbiome. This biotransformation process involves a cascade of exclusive gut microbial enzymes which chemically modify the GT polyphenols influencing both their bioactivity and bioavailability in host. Herein, we examined the in vitro interactions between 37 different human gut microbiota and the GT polyphenols. UHPLC-LTQ-Orbitrap-MS/MS analysis of the culture broth extracts unravel that genera Adlercreutzia, Eggerthella and Lactiplantibacillus plantarum KACC11451 promoted C-ring opening reaction in GT catechins. In addition, L. plantarum also hydrolyzed catechin galloyl esters to produce gallic acid and pyrogallol, and also converted flavonoid glycosides to their aglycone derivatives. Biotransformation of GT polyphenols into derivative compounds enhanced their antioxidant bioactivities in culture broth extracts. Considering the effects of GT polyphenols on specific growth rates of gut bacteria, we noted that GT polyphenols and their derivate compounds inhibited most species in phylum Actinobacteria, Bacteroides, and Firmicutes except genus Lactobacillus. The present study delineates the likely mechanisms involved in the metabolism and bioavailability of GT polyphenols upon exposure to gut microbiota. Further, widening this workflow to understand the metabolism of various other dietary polyphenols can unravel their biotransformation mechanisms and associated functions in human GIT.


Subject(s)
Antioxidants , Catechin , Humans , Antioxidants/pharmacology , Tandem Mass Spectrometry , Polyphenols/pharmacology , Polyphenols/chemistry , Polyphenols/metabolism , Bacteria , Tea , Catechin/pharmacology
7.
Sci Rep ; 13(1): 9276, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37286700

ABSTRACT

A novel frictional drag reducing self-polishing copolymer (FDR-SPC) was first developed by the authors. The FDR-SPC is a special derivative of an SPC that was designed to achieve skin frictional drag reduction in turbulent water flow by releasing polyethylene glycol (PEG) into water through a hydrolysis reaction. Thus, the FDR-SPC coating acts as a continuous medium accommodating countless, molecular-level polymer injectors. However, direct evidence of such PEG release has not yet been demonstrated. Here, we report the results of in situ PEG concentration measurement based on the planar laser-induced fluorescence (PLIF) method. Polyethylene glycol methacrylate (PEGMA) was probed by the fluorescent functional material dansyl, and the fluorescence intensity from dansyl-PEG was then measured to quantify the concentration in the flow. The near-wall concentration of dansyl-PEG is observed to range from 1 to 2 ppm depending on the flow speed, which corroborates the existence of a drag reducing function for the FDR-SPC. In the concurrent measurement of skin friction, the present FDR-SPC specimen exhibited a skin friction reduction ratio of 9.49% at the freestream flow speed [Formula: see text]. In the comparative experiment of dansyl-PEGMA solution injection, the skin friction was found to decrease by 11.9%, which is in reasonable accordance with that for the FDR-SPC.

8.
Nat Commun ; 13(1): 6554, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323683

ABSTRACT

The pathways that impact longevity in the wake of dietary restriction (DR) remain still ill-defined. Most studies have focused on nutrient limitation and perturbations of energy metabolism. We showed that the L-threonine was elevated in Caenorhabditis elegans under DR, and that L-threonine supplementation increased its healthspan. Using metabolic and transcriptomic profiling in worms that were fed with RNAi to induce loss of key candidate mediators. L-threonine supplementation and loss-of-threonine dehydrogenaseincreased the healthspan by attenuating ferroptosis in a ferritin-dependent manner. Transcriptomic analysis showed that FTN-1 encoding ferritin was elevated, implying FTN-1 is an essential mediator of longevity promotion. Organismal ferritin levels were positively correlated with chronological aging and L-threonine supplementation protected against age-associated ferroptosis through the DAF-16 and HSF-1 pathways. Our investigation uncovered the role of a distinct and universal metabolite, L-threonine, in DR-mediated improvement in organismal healthspan, suggesting it could be an effective intervention for preventing senescence progression and age-induced ferroptosis.


Subject(s)
Caenorhabditis elegans Proteins , Ferroptosis , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Threonine/metabolism , Ferritins/genetics , Ferritins/metabolism , Caloric Restriction , Signal Transduction , Longevity/physiology
9.
Nutrients ; 14(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35631156

ABSTRACT

Irritable bowel syndrome (IBS) causes intestinal discomfort, gut dysfunction, and poor quality of life. This randomized, double-blind placebo-controlled trial evaluated the efficacy of Lactiplantibacillus (Lp., formerly Lactobacillus) plantarum APsulloc 331261 (GTB1TM) from green tea leaves in participants with diarrhea-predominant irritable bowel syndrome (IBS-D). Twenty-seven participants meeting the Rome IV diagnostic criteria were randomized for GTB1 or placebo ingestion for four weeks and follow-up for two weeks. The efficacy endpoints included adequate global relief of symptoms, assessment of intestinal discomfort symptom severity and frequency, stool frequency, satisfaction, and fecal microbiome abundance. Of all participants, 94.4% and 62.5% reported global relief of symptoms in the GTB1 and placebo groups, respectively, with significant differences (p = 0.037). GTB1 significantly reduced the severity and frequency of abdominal pain, bloating, and feeling of incomplete evacuation. The frequencies of diarrhea were decreased -45.89% and -26.76% in the GTB1 and placebo groups, respectively (p = 0.045). Hence, GTB1 ingestion improved IBS-D patient quality of life. After four weeks treatment, the relative abundance of Lactobacillus was higher in the GTB1 than in the placebo group (p = 0.010). Our results showed that GTB1 enhanced intestinal discomfort symptoms, defecation consistency, quality of life, beneficial microbiota, and overall intestinal health.


Subject(s)
Irritable Bowel Syndrome , Lactobacillus plantarum , Diarrhea/etiology , Double-Blind Method , Humans , Quality of Life , Treatment Outcome
10.
Front Biosci (Elite Ed) ; 13(2): 237-248, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34937311

ABSTRACT

Balanced skin microbiota is crucial for maintaining healthy normal skin function; however, disruption of the balance in skin microbiota is linked with skin diseases such as atopic dermatitis, acne vulgaris, dandruff, and candidiasis. Lactoplantibacillus species with proved with health benefits are probiotics that improve the balance of microbiome in skin and gut. In the present study, we investigated the potential antimicrobial activity of Lactiplantibacillus plantarum APsulloc 331261 (APsulloc 331261) and Lactiplantibacillus plantarum APsulloc 331266 (APsulloc 331266) derived from green tea, in inhibiting five skin pathogenic strains (Staphylococcus aureus (S. aureus), Cutibacterium acnes (C. acnes), Candia albicans (C. albicans), Malassezia globosa (M. globose), and Malassezia restricta (M. restricta)) associated with skin infection. Viability of S. aureus, C. acnes, C. albicans, M. globosa, and M. restricta was inhibited by indirect co-culture with APsulloc 331261 or APsulloc 331266 at various ratios. Different concentrations of the cell-free conditioned media (CM) derived from APsulloc 331261 or APsulloc 331266 inhibited the vaibility of S. aureus, C. acnes, C. albicans, M. globosa, and M. restricta in a dose dependent manner. Moreover, susceptibility of S. aureus, C. acnes and C. albicans against APsulloc 331261 or APsulloc 331266 was confirmed following agar overlay methods. Results of the agar overlay confirmed that various concentrations of APsulloc 331261 and APsulloc 331266 exhibited low to high inhibitory activity on the growth of S. aureus (ZDI 20.3 ± 2.1-32.3 ± 2.1 mm, R value 5.7 ± 0.8-7.8 ± 1.3 mm), C. acnes (ZDI 15.0 ± 1.7-22.2 ± 1.7 mm, R value 3.2 ± 1.3-5.5 ± 1.3 mm) and C. albicans (ZDI 13.3 ± 4.0-27.0 ± 3.6 mm, R value 2.8 ± 1.9-5.5 ± 1.7 mm). Finally, standard PCR analysis identified the presence of the of plantaricin genes encoding antimicrobial peptides in APsulloc 331261 and APsulloc 331266. These results suggest that APsulloc 331261 and APsulloc 331266 has a potential effect in the improvement of the balance of skin microbiota by inhibiting skin pathogenic strains.


Subject(s)
Anti-Infective Agents , Microbiota , Antimicrobial Peptides , Skin , Staphylococcus aureus
11.
J Med Food ; 23(8): 841-851, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32598202

ABSTRACT

Trillions of microorganisms reside in the hosts' gut. Since diverse activities of gut microbiota affect the hosts' health status, maintenance of gut microbiota is important for maintaining human health. Green tea (GT) has multiple beneficial effects on energy metabolism with antiobesity, antidiabetic, and hypolipidemic properties. As GT contains a large amount of bioactive ingredients (e.g., catechins), which can be metabolized by microorganisms, it would be feasible that consumption of GT may cause compositional changes in gut microbiota, and that the changes in gut microbiota would be associated with the beneficial effects of GT. In this study, we demonstrated that consumption of GT extract relieves high-fat diet-induced metabolic abnormalities. Interestingly, GT administration significantly encouraged the growth of Akkermansia muciniphila (Akkermansia), a beneficial microorganism to relieve obesity and related metabolic disorders. Finally, we found that epigallocatechin gallate is the component of GT that stimulates the growth of Akkermansia. According to these data, we propose that GT could be a prebiotic agent for Akkermansia to treat metabolic syndromes.


Subject(s)
Akkermansia/growth & development , Catechin/analogs & derivatives , Gastrointestinal Microbiome , Tea/chemistry , Akkermansia/drug effects , Animals , Catechin/pharmacology , Diet, High-Fat/adverse effects , Male , Mice , Mice, Inbred BALB C
12.
Front Microbiol ; 11: 420, 2020.
Article in English | MEDLINE | ID: mdl-32256476

ABSTRACT

Gastric inflammation is an indication of gastric ulcers and possible other underlying gastric malignancies. Epidemiological studies have revealed that several Asian countries, including South Korea, suffer from a high incidence of gastric diseases derived from high levels of stress, alcoholic consumption, pyloric infection and usage of non-steroidal anti-inflammatory drugs (NSAIDs). Clinical treatments of gastric ulcers are generally limited to proton pump inhibitors that neutralize the stomach acid, and the application of antibiotics for Helicobacter pylori eradication, both of which are known to have a negative effect on the gut microbiota. The potential of probiotics for alleviating gastrointestinal diseases such as intestinal bowel syndrome and intestinal bowel disease receives increasing scientific interest. Probiotics may support the amelioration of disease-related symptoms through modulation of the gut microbiota without causing dysbiosis. In this study the potential of Lactobacillus plantarum APSulloc 331261 (GTB1TM), isolated from green tea, was investigated for alleviating gastric inflammation in an alcohol induced gastric ulcer murine model (positive control). Treatment with the test strain significantly influenced the expression of pro-inflammatory and anti-inflammatory biomarkers, interleukin 6 (IL6) and interleukin 10 (IL10), of which the former was down- and the latter up-regulated when the alcohol induced mice were treated with the test strain. This positive effect was also indicated by less severe gastric morphological changes and the histological score of the gastric tissues. A significant increase in the abundance of Akkermansia within the GTB1TM treated group compared to the positive control group also correlated with a decrease in the ratio of acetate over propionate. The increased levels of propionate in the GTB1TM group appear to result from the impact of the test strain on the microbial population and the resulting metabolic activities. Moreover, there was a significant increase in beta-diversity in the group that received GTB1TM over that of the alcohol induced control group.

13.
Probiotics Antimicrob Proteins ; 12(3): 1057-1070, 2020 09.
Article in English | MEDLINE | ID: mdl-31786735

ABSTRACT

Lactobacillus plantarum shows high intraspecies diversity species, and has one of the largest genome sizes among the lactobacilli. It is adapted to diverse environments and provides a promising potential for various applications. The aim of the study was to investigate the safety and probiotic properties of 18 L. plantarum strains isolated from fermented food products, green tea, and insects. For preliminary safety evaluation the L. plantarum strains were tested for their ability to produce hemolysin and biogenic amines and for their antibiotic resistance. Based on preliminary safety screening, four strains isolated from green tea showed antibiotic resistance below the cut-off MIC values suggested by EFSA, and were selected out of the 18 strains for more detailed studies. Initial selection of strains with putative probiotic potential was determined by their capacity to survive in the human GIT using an in vitro simulation model, and for their adhesion to human Caco-2/TC-7 cell line. Under simulated GIT conditions, all four L. plantarum strains isolated from green tea showed higher survival rates than the control (L. plantarum subsp. plantarum ATCC 14917). All studied strains were genetically identified by 16S rRNA gene sequencing and confirmed to be L. plantarum. In addition, whole-genome sequence analysis of L. plantarum strains APsulloc 331261 and APsulloc 331263 from green tea was performed, and the outcome was compared with the genome of L. plantarum strain WCFS1. The genome was also annotated, and genes related to virulence factors were searched for. The results suggest that L. plantarum strains APsulloc 331261 and APsulloc 331263 can be considered as potential beneficial strains for human and animal applications.


Subject(s)
Fermented Foods/microbiology , Lactobacillus plantarum , Probiotics , Tea/microbiology , Caco-2 Cells , Humans , Lactobacillus plantarum/genetics , Lactobacillus plantarum/isolation & purification , Lactobacillus plantarum/metabolism , Probiotics/analysis , Probiotics/isolation & purification , RNA, Ribosomal, 16S/genetics
14.
Biomed Res Int ; 2019: 5815604, 2019.
Article in English | MEDLINE | ID: mdl-31380432

ABSTRACT

BACKGROUND: Sasa quelpaertensis Nakai extract (SQE) or dwarf bamboo has been extensively investigated for its antioxidant and anti-inflammatory effects; however, no previous study assessed its effect as an antidepressant agent. Therefore, this study was designed to examine the effect of oral SQE administration in ameliorating menopausal depressive symptoms and to evaluate its mechanisms in ovariectomized rats with repeated stress. METHODS: All experimental groups except normal group underwent ovariectomy and then immobilization for 14 consecutive days. During these 2 weeks, two rat groups received SQE (100 and 300 mg/kg orally) and their cutaneous body temperature was measured. The tail suspension test (TST) and forced swim test (FST) were performed in order to evaluate depression-like behavior. Additionally, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were carried out to evaluate the central monoaminergic neurotransmitter levels and activity. RESULTS: Oral SQE (100 mg/kg) administration had reduced immobility time in TST and FST. Additionally, the SQE 100 and 300 mg/kg administration had decreased the cutaneous body temperature in the rats compared to those without treatment. In ELISA analysis, the SQE 100 group expressed elevated levels of serotonin and dopamine in the hypothalamus, prefrontal cortex, and hippocampus. Antityrosine hydroxylase (anti-TH) antibodies showed a tremendous increase in the density of TH positive cells in the locus coeruleus (LC) region of the SQE 100 group. Likewise, the SQE 100 elevated the number of tryptophan hydroxylase (TPH) and protein kinase C (PKC) immunoreactive cell counts and density in the hypothalamic region. CONCLUSION: These results suggested that the oral SQE administration induced the antidepressant-like effect in the ovariectomized rats with repeated stress via upregulating the levels of serotonin and dopamine through enhancing the expression of TH, TPH, and PKC in many brain areas.


Subject(s)
Antidepressive Agents/chemistry , Depression/drug therapy , Plant Extracts/chemistry , Sasa/chemistry , Animals , Antidepressive Agents/pharmacology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Hindlimb Suspension/methods , Humans , Ovariectomy , Plant Extracts/pharmacology , Plant Leaves/chemistry , Rats , Swimming
15.
J Med Food ; 22(8): 779-788, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31210578

ABSTRACT

Green tea is reported to exert beneficial effects on metabolic disorders through the regulation of lipid metabolism. On the contrary, fermented food products have been introduced to improve human health by modulating immune response and energy metabolism. To maximize health benefit, we applied fermentation processing to green tea. Fermented green tea extract (FGT) inhibited adipogenesis and lipogenesis in cultured adipocytes, whereas it augmented mRNA expression of fatty acid oxidation-related genes in differentiated myocytes. In diet-induced obese mice, FGT blunted body weight and fat mass gain by 69.7% and 56.7%, respectively. FGT also improved circulating triglyceride concentrations by 32.6%. Similar to in vitro results, FGT suppressed lipogenesis and promoted lipid catabolism in peripheral tissues. In addition, FGT administration modulated the composition of certain gut microbiota which are associated with obesity and related metabolic disorders. Among the various components of FGT, gallocatechin gallate is suggested to mediate the effect of FGT on lipid metabolism. Taken together, we propose FGT as a novel functional food to benefit human health by controlling adiposity and lipid metabolism.


Subject(s)
Adipocytes/drug effects , Catechin/analogs & derivatives , Hypertriglyceridemia/drug therapy , Lipid Metabolism/drug effects , Muscle Cells/drug effects , Obesity/drug therapy , Plant Extracts/administration & dosage , Adipocytes/metabolism , Animals , Bacillus subtilis/metabolism , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Camellia sinensis/microbiology , Catechin/administration & dosage , Catechin/analysis , Catechin/metabolism , Fermentation , Humans , Lipogenesis/drug effects , Male , Mice , Mice, Inbred C57BL , Muscle Cells/metabolism , Obesity/metabolism , Plant Extracts/analysis , Plant Extracts/metabolism , Triglycerides/metabolism
16.
Biomedicines ; 6(4)2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30469388

ABSTRACT

BACKGROUND: This study aimed to investigate the antidepressant-like effect of lactate and elucidate its mechanisms in ovariectomized rats with repeated stress. METHODS: Two experiments were conducted on female rats in which all groups, except normal, were ovariectomized and underwent immobilization for 14 days. Lactate was administered orally (100, 250, and 500 mg/kg) for 14 consecutive days, and the rats' cutaneous body temperature was measured during the same period. Depression-like behavior in rats was assessed by the tail suspension test (TST) and forced swimming test (FST). Furthermore, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were conducted to evaluate the changes that occurred in the neurotransmitter levels and activity. RESULTS: The lactate 100 and 250 groups had reduced time spent immobile in TST and FST and decreased peripheral body temperature. In ELISA tests, the lactate 250 group expressed elevated levels of serotonin and dopamine in many brain areas. Tyrosine hydroxylase (TH), tryptophan hydroxylase (TPH), and protein kinase C (PKC) immunoreactive cells showed increased density and cell counts in lactate administered groups. CONCLUSION: Results indicated that lactate has an antidepressant effect that is achieved by activation of PKC and upregulation of TH and TPH expression, which eventually leads to enhanced serotonin and dopamine levels in the menopausal rat's brain.

17.
J Ginseng Res ; 41(3): 277-283, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28701867

ABSTRACT

BACKGROUND: The ginseng berry has various bioactivities, including antidiabetic, anticancer, antiinflammatory, and antioxidative properties. Moreover, we have revealed that the active antiaging component of the ginseng berry, syringaresinol, has the ability to stimulate longevity via gene activation. Despite the many known beneficial effects of ginseng, its effects on skin aging are poorly understood. In this study, we investigated the effects of ginseng and the ginseng berry on one of the skin aging processes, melanogenesis, and age-related pigment lipofuscin accumulation, to elucidate the mechanism of action with respect to antiaging. METHODS: The human melanoma MNT1 cell line was treated with ginseng root extract, ginseng berry extract, or syringaresinol. Then, the cells were analyzed using a melanin assay, and the tyrosinase activity was estimated. The Caenorhabditis elegans wild type N2 strain was used for the life span assay to analyze the antiaging effects of the samples. A lipofuscin fluorescence assay was performed during 10 passages with the syringaresinol treatment. RESULTS: A 7-d treatment with ginseng berry extract reduced melanin accumulation and tyrosinase activity more than ginseng root extract. These results may be due to the active compound of the ginseng berry, syringaresinol. The antimelanogenic activity was strongly coordinated with the activation of the longevity gene foxo3a. Moreover, the ginseng berry extract had more potent antiaging effects, caused a life span extension, and reduced lipofuscin accumulation. CONCLUSION: Taken together, our results suggest that these antimelanogenic effects and antiaging effects of ginseng berry mediate the activation of antioxidation-FoxO3a signaling.

19.
Curr Med Chem ; 24(9): 943-949, 2017 May 03.
Article in English | MEDLINE | ID: mdl-27978807

ABSTRACT

BACKGROUND: Aging is a phenomenon in which the functions, adaptability and resistance of an organism decrease over time. With the global population aging at an accelerating pace, delaying the negative aspects of aging is vital for advancing the human life span and quality of life. The aging of multiple organs can lead to many diseases, and the cardiovascular system is no exception. Indeed, one of the primary risk factors for cardiovascular diseases is aging because of altered cardiovascular metabolism resulting in metabolic disorders and inflammation. METHODS: We attempted an organized search of bibliographic databases for peer-reviewed research papers by searching featured reviews using inclusion/exclusion criteria. The collected papers were assessed by standard tools for quality control. RESULTS: Forty-six papers were admitted to the review, and most papers featured recent research results (44) and reviewed the research field (8). We discuss these papers along with the recent progress of our work. In this review, we examine the relationship of oxidative stress with aging and the FoxO proteins, which are essential anti-aging factors in the cardiovascular system. CONCLUSION: The observations of this review suggest that anti-aging signaling mediated by FoxO proteins is important for understanding cardiovascular aging and the design of medicinal approaches.

20.
Sci Rep ; 6: 39026, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27976725

ABSTRACT

Age-associated immunological dysfunction (immunosenescence) is closely linked to perturbation of the gut microbiota. Here, we investigated whether syringaresinol (SYR), a polyphenolic lignan, modulates immune aging and the gut microbiota associated with this effect in middle-aged mice. Compared with age-matched control mice, SYR treatment delayed immunosenescence by enhancing the numbers of total CD3+ T cells and naïve T cells. SYR treatment induced the expression of Bim as well as activation of FOXO3 in Foxp3+ regulatory T cells (Tregs). Furthermore, SYR treatment significantly enhanced the Firmicutes/Bacteroidetes ratio compared with that in age-matched controls by increasing beneficial bacteria, Lactobacillus and Bifidobacterium, while reducing the opportunistic pathogenic genus, Akkermansia. In addition, SYR treatment reduced the serum level of lipopolysaccharide-binding protein, an inflammatory marker, and enhanced humoral immunity against influenza vaccination to the level of young control mice. Taken together, these findings suggest that SYR may rejuvenate the immune system through modulation of gut integrity and microbiota diversity as well as composition in middle-aged mice, which may delay the immunosenescence associated with aging.


Subject(s)
Aging/immunology , Furans/pharmacology , Gastrointestinal Microbiome/drug effects , Immunosenescence/drug effects , Lignans/pharmacology , Animals , Area Under Curve , Bifidobacterium/drug effects , Bifidobacterium/immunology , Bifidobacterium/physiology , CD3 Complex/immunology , CD3 Complex/metabolism , Female , Forkhead Box Protein O3/immunology , Forkhead Box Protein O3/metabolism , Furans/pharmacokinetics , Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/physiology , Immunosenescence/immunology , Lactobacillus/drug effects , Lactobacillus/immunology , Lactobacillus/physiology , Lignans/pharmacokinetics , Male , Mice, Inbred C57BL , Mice, Inbred ICR , Rats, Sprague-Dawley , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Verrucomicrobia/drug effects , Verrucomicrobia/immunology , Verrucomicrobia/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...