Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 75, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013208

ABSTRACT

Metal oxides are intensively used for multilayered optoelectronic devices such as organic light-emitting diodes (OLEDs). Many approaches have been explored to improve device performance by engineering electrical properties. However, conventional methods cannot enable both energy level manipulation and conductivity enhancement for achieving optimum energy band configurations. Here, we introduce a metal oxide charge transfer complex (NiO:MoO3-complex), which is composed of few-nm-size MoO3 domains embedded in NiO matrices, as a highly tunable carrier injection material. Charge transfer at the finely dispersed interfaces of NiO and MoO3 throughout the entire film enables effective energy level modulation over a wide work function range of 4.47 - 6.34 eV along with enhanced electrical conductivity. The high performance of NiO:MoO3-complex is confirmed by achieving 189% improved current efficiency compared to that of MoO3-based green OLEDs and also an external quantum efficiency of 17% when applied to blue OLEDs, which is superior to 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile-based conventional devices.

2.
Sci Adv ; 7(41): eabh2012, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34623908

ABSTRACT

Nanograined metal oxides are requisite for diverse applications that use large surface area, such as gas sensors and catalysts. However, nanoscale grains are thermodynamically unstable and tend to coarsen at elevated temperatures. Here, we report effective grain growth suppression in metal oxide nanoribbons annealed at high temperature (900°C) by tuning the metal-to-oxygen ratio and confining the nanoribbons. Despite the high annealing temperatures, the average grain size was maintained at ~6 nm, which also retained their structural integrity. We observe that excess oxygen in amorphous tin oxide nanoribbons prevents merging of small grains during crystallization, leading to suppressed grain growth. As an exemplary application, we demonstrate a gas sensor using grain growth­suppressed tin oxide nanoribbons, which exhibited both high sensitivity and unusual long-term operation stability. Our findings provide a previously unknown pathway to simultaneously achieve high performance and excellent thermal stability in nanograined metal oxide nanostructures.

3.
Adv Mater ; 33(44): e2105199, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34569647

ABSTRACT

Practical sensing applications such as real-time safety alerts and clinical diagnoses require sensor devices to differentiate between various target molecules with high sensitivity and selectivity, yet conventional devices such as oxide-based chemo-resistive sensors and metal-based surface-enhanced Raman spectroscopy (SERS) sensors usually do not satisfy such requirements. Here, a label-free, chemo-resistive/SERS multimodal sensor based on a systematically assembled 3D cross-point multifunctional nanoarchitecture (3D-CMA), which has unusually strong enhancements in both "chemo-resistive" and "SERS" sensing characteristics is introduced. 3D-CMA combines several sensing mechanisms and sensing elements via 3D integration of semiconducting SnO2 nanowire frameworks and dual-functioning Au metallic nanoparticles. It is shown that the multimodal sensor can successfully estimate mixed-gas compositions selectively and quantitatively at the sub-100 ppm level, even for mixtures of gaseous aromatic compounds (nitrobenzene and toluene) with very similar molecular structures. This is enabled by combined chemo-resistive and SERS multimodal sensing providing complementary information.


Subject(s)
Metal Nanoparticles
4.
Sci Adv ; 7(38): eabg8013, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34524852

ABSTRACT

Rapid, accurate, and intuitive detection of unknown liquids is greatly important for various fields such as food and drink safety, management of chemical hazards, manufacturing process monitoring, and so on. Here, we demonstrate a highly responsive and selective transparency-switching medium for on-site, visual identification of various liquids. The light scattering­based sensing medium, which is designed to be composed of polymeric interphase voids and hollow nanoparticles, provides an extremely large transmittance window (>95%) with outstanding selectivity and versatility. This sensing medium features ternary transparency states (transparent, semitransparent, and opaque) when immersed in liquids depending on liquid-polymer interactions and diffusion kinetics. Several different types of these transparency-changing media can be configured into an arrayed platform to discriminate a wide variety of liquids and also quantify their mixing ratios. The outstanding versatility and user friendliness of the sensing platform allow the development of a practical tool for discrimination of diverse organic liquids.

5.
Nat Commun ; 11(1): 4921, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33004820

ABSTRACT

Despite highly promising characteristics of three-dimensionally (3D) nanostructured catalysts for the oxygen evolution reaction (OER) in polymer electrolyte membrane water electrolyzers (PEMWEs), universal design rules for maximizing their performance have not been explored. Here we show that woodpile (WP)-structured Ir, consisting of 3D-printed, highly-ordered Ir nanowire building blocks, improve OER mass activity markedly. The WP structure secures the electrochemically active surface area (ECSA) through enhanced utilization efficiency of the extended surface area of 3D WP catalysts. Moreover, systematic control of the 3D geometry combined with theoretical calculations and various electrochemical analyses reveals that facile transport of evolved O2 gas bubbles is an important contributor to the improved ECSA-specific activity. The 3D nanostructuring-based improvement of ECSA and ECSA-specific activity enables our well-controlled geometry to afford a 30-fold higher mass activity of the OER catalyst when used in a single-cell PEMWE than conventional nanoparticle-based catalysts.

6.
Adv Mater ; 32(35): e1907500, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32319170

ABSTRACT

For the last few decades, nanoscale materials and structures have been extensively studied and developed, making a huge impact on human sustainability. For example, the introduction of nanostructures has brought substantial development in electrocatalysts and optical sensing applications. However, there are still remaining challenges that need to be resolved to further improve their performance, reliability, and cost-effectiveness. Herein, long-range ordered 3D nanostructures and their design principles are introduced with an emphasis on electrocatalysts for energy conversion and plasmonic nanostructures for optical sensing. Among the various fabrication techniques, sequential solvent-injection-assisted nanotransfer printing is suggested as a practical fabrication platform for tunable long-range ordered 3D nanostructures composed of ultrahigh-resolution building blocks. Furthermore, the importance of understanding and controlling the 3D design parameters is discussed to realize more efficient energy conversion as well as effective surface-enhanced Raman spectroscopy analyses, suggesting new solutions for clean energy and healthcare issues.

7.
Adv Mater ; 32(38): e2002099, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33617118

ABSTRACT

Although hexagonal boron nitride (BN) nanostructures have recently received significant attention due to their unique physical and chemical properties, their applications have been limited by a lack of processability and poor film quality. In this study, a versatile method to transfer-print high-quality BN films composed of densely stacked BN nanosheets based on a desolvation-induced adhesion switching (DIAS) mechanism is developed. It is shown that edge functionalization of BN sheets and rational selection of membrane surface energy combined with systematic control of solvation and desolvation status enable extensive tunability of interfacial interactions at BN-BN, BN-membrane, and BN-substrate boundaries. Therefore, without incorporating any additives in the BN film and applying any surface treatment on target substrates, DIAS achieves a near 100% transfer yield of pure BN films on diverse substrates, including substrates containing significant surface irregularities. The printed BNs demonstrate high optical transparency (>90%) and excellent thermal conductivity (>167 W m-1 K-1) for few-micrometer-thick films due to their dense and well-ordered microstructures. In addition to outstanding heat dissipation capability, substantial optical enhancement effects are confirmed for light-emitting, photoluminescent, and photovoltaic devices, demonstrating their remarkable promise for next-generation optoelectronic device platforms.

8.
Phys Rev E ; 100(5-1): 052502, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31869916

ABSTRACT

In this paper, we explore the self-assembly behavior of disk-coil block copolymers (BCPs) confined within a cylinder using molecular dynamics simulations. As functions of the diameter of the confining cylinder and the number of coil beads, concentric lamellar structures are obtained with a different number of alternating disk-rich and coil-rich bilayers. Our paper focuses on the curvature-induced structural behavior in the disk-rich domain of a self-assembled structure, which is investigated by calculating the local density distribution P(r) and the orientational distribution G(r,θ). In the inner layers of cylinder-confined disk-coil BCPs, both P(r) and G(r,θ) show characteristic asymmetry within a bilayer which is directly contrasted with the bulk and slab-confined disk-coil BCPs. We successfully explain the structural frustration of disks arising from the curved structure due to packing frustration of disks and asymmetric stretching of coils to the regions with different curvatures in a bilayer. Our results are important to understand the self-assembly behavior of BCPs containing a rigid motif in a confined structure, such as a self-assembled structure of bacteriochlorophyll molecules confined by a lipid layer to form a chlorosome, the photosynthetic antennae complex found in nature.

9.
Nano Lett ; 19(10): 6827-6838, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31476862

ABSTRACT

Achieving high emission efficiency in solid-state quantum dots (QDs) is an essential requirement for high-performance QD optoelectronics. However, most QD films suffer from insufficient excitation and light extraction efficiencies, along with nonradiative energy transfer between closely adjacent QDs. Herein, we suggest a highly effective strategy to enhance the photoluminescence (PL) of QD composite films through an assembly of QDs and poly(styrene-b-4-vinylpyridine)) (PS-b-P4VP) block copolymer (BCP). A BCP matrix casted under controlled humidity provides multiscale phase-separation features based on (1) submicrometer-scale spinodal decomposition between polymer-rich and water-rich phases and (2) sub-10 nm-scale microphase separation between polymer blocks. The BCP-QD composite containing bicontinuous random pores achieves significant enhancement of both light absorption and extraction efficiencies via effective random light scattering. Moreover, the microphase-separated morphology substantially reduces the Förster resonance energy transfer efficiency from 53% (pure QD film) to 22% (BCP-QD composite), collectively achieving an unprecedented 21-fold enhanced PL over a broad spectral range.

10.
Chem Commun (Camb) ; 54(76): 10722-10725, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30187043

ABSTRACT

Thermal energy storage and release in aliphatic phase-change materials are actively controlled by adding azobenzene-based photo-switches. UV activation of the additives induces supercooling of the composites, allowing for longer thermal storage at lower temperatures. The mechanism of this process is studied by comparing phase change behavior across diverse materials.

11.
ACS Appl Mater Interfaces ; 9(10): 8679-8687, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28234453

ABSTRACT

Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.

SELECTION OF CITATIONS
SEARCH DETAIL
...