Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Endod ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38768706

ABSTRACT

INTRODUCTION: Microbiota associated with primary (PEI) and secondary/persistent (SPEI) endodontic infections must be characterized to elucidate pathogenesis in apical periodontitis and bacterial biomarkers identified for diagnostic and therapeutic applications. METHODS: This study analyzed the microbial community profiles of root canals and gingival sulci (sulcus-E) for teeth with PEI (n = 10) or SPEI (n = 10), using the Illumina MiSeq platform. Bacterial samples from gingival sulci (sulcus-C) of healthy contralateral teeth served as controls. RESULTS: There were 15 phyla, 177 genera, and 340 species identified. The number and diversity of bacteria in root canals did not differ significantly between PEI and SPEI. Proteobacteria, Firmicutes, Fusobacteria, Bacteroidetes, and Actinobacteria were the dominant phyla in both groups. At the genus level, Lancefieldella, Bifidobacterium, Stomatobaculum, and Schaalia were enriched in root canals with SPEI. Of significance, Lancefieldella was observed in both root canals and sulcus-E of teeth with SPEI. At the species level, Neisseria macacae, Streptococcus gordonii, Bifidobacterium dentium, Stomatobaculum longum, and Schaalia odontolytica were increased significantly in root canals with SPEI compared to PEI. Oribacterium species, Streptococcus salivarius, Lancefieldella parvula, Prevotella denticola, and Oribacterium asaccharolyticum were more abundant in sulcus-E of teeth with SPEI compared to PEI. CONCLUSIONS: There were distinctive and differing predominant bacterial species associated with the root canals and gingival sulci between teeth with PEI and SPEI. Specific bacteria identified in sulcus-E and root canals of teeth with SPEI could serve as non-invasive diagnostic biomarkers for detecting SPEI.

2.
J Endod ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38642732

ABSTRACT

INTRODUCTION: This retrospective cohort study aimed to evaluate long-term healing outcomes (10-17.5 years) after contemporary endodontic microsurgery (EMS) and identify the associated prognostic factors. METHODS: Clinical and radiographic data of an EMS cohort (2006-2013) from the electronic database of the dental hospital were reviewed retrospectively by 2 independent examiners to determine their survival and healing outcomes, and potential prognostic factors were analyzed by Cox proportional hazards regression and logistic regression (α = 0.05). RESULTS: Through strict inclusion and exclusion criteria and 721 EMS-treated teeth in the cohort, 309 (42.9%) were included (male = 35.0%; female = 65.0%; age = 45.83 ± 15.53 years) with a mean final follow-up of 152.26 ± 26.37 months (range, 120-211 months; median = 148 months). Clinical and radiographic assessments found an 80.5% 10-year survival rate with 63.4% of success. Collectively, tooth type, tooth mobility, preoperative lesion size, clinical crown-to-root ratio, and crown restorations at follow-up were significantly associated with long-term success and survival over 10 years. CONCLUSIONS: The preoperative status and condition of the tooth including its alveolar bone support and adequate full-crown restorations may be relevant prognostic determinants of success and survival after EMS over time.

3.
Materials (Basel) ; 16(18)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37763431

ABSTRACT

Three-dimensional (3D) printed calcium phosphate cement (CPC) scaffolds are increasingly being used for bone tissue repair. Traditional materials used for CPC scaffolds, such as bovine and porcine bone, generally contain low amounts of calcium phosphate compounds, resulting in reduced production rates of CPC scaffolds. On the other hand, cockle shells contain more than 99% CaCO3 in the form of amorphous aragonite with excellent biocompatibility, which is expected to increase the CPC production rate. In this study, 3D-printed cockle shell powder-based CPC (CSP-CPC) scaffolds were developed by the material extrusion method. Lactic acid and hyaluronic acid were used to promote the printability. The characterization of CSP-CPC scaffolds was performed using Fourier transform infrared spectra, X-ray diffraction patterns, and scanning electron microscopy. The biocompatibility of CSP-CPC scaffolds was evaluated using cell viability, Live/Dead, and alkaline phosphatase assays. In addition, CSP-CPC scaffolds were implanted into the mouse calvarial defect model to confirm bone regeneration. This study provides an opportunity to create high value added in fishing villages by recycling natural products from marine waste.

4.
J Microbiol Methods ; 184: 106211, 2021 05.
Article in English | MEDLINE | ID: mdl-33774110

ABSTRACT

This study was performed to examine whether the use of nitrogen-doped carbon nanodots (N-CNDs) can improve the detection sensitivity of the 3 M™ molecular detection system (MDS) for Campylobacter. N-CNDs were added to a Campylobacter enrichment broth (CEB) at concentrations of 5 and 10 mg/mL (NCEB-5 and NCEB-10, respectively). Campylobacter coli, C. jejuni, and C. lari were inoculated into the broths. The broth cultures were then irradiated with light-emitting diode (LED) at 425 nm for 1 h and incubated at 42 °C for 6 h, and then grown on modified charcoal cefoperazone deoxycholate agar (mCCDA). The detection rates of the MDS and a conventional method (plating an enriched sample on mCCDA and analyzing a colony on mCCDA with PCR) for Campylobacter in chicken and duck carcasses were compared. The detection rates from the MDS were compared after enrichment in CEB and NCEB-5 at 3, 5, 6, 7, 9, 12, and 24 h. When 5 mg/mL of N-CNDs was added to the CEB followed by irradiation at 425 nm, growth of the Campylobacter was accelerated. In addition, the qualitative test was more sensitive in the MDS than in the conventional method, and the detection time was shortened in CEB enriched with N-CNDs. These results indicate that adding N-CNDs to CEB can improve the detection efficiency of MDS.


Subject(s)
Campylobacter Infections/veterinary , Campylobacter/growth & development , Colony Count, Microbial/methods , Meat/microbiology , Poultry Diseases/microbiology , Animals , Campylobacter/genetics , Campylobacter/isolation & purification , Campylobacter/metabolism , Campylobacter Infections/microbiology , Carbon/metabolism , Chickens , Colony Count, Microbial/instrumentation , Culture Media/metabolism , Ducks , Food Contamination/analysis , Nanoparticles/chemistry , Nitrogen/metabolism
5.
Chemosphere ; 244: 125589, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32050353

ABSTRACT

Radioactive Cs ions are extremely harmful to the human body, causing cancers and other diseases. Treatments were performed on radioactive Cs present in wastewater after use in industrial or medical fields. Prussian blue (PB) has been widely used for the removal of Cs ions from water but its colloidal structure hinders reuse, making it problematic for practical use. To solve this problem, we used a commercial macroporous polymer resin as a PB matrix. To provide an efficient anchor for PB, the surface of the polymer resin was decorated with sodium dodecylbenzenesulfonate to produce a negatively charged surface. The successful chemical binding between the polymer resin and PB prevented leakage of the latter during adsorption and crosslinked structure of the matrix provided regeneration of the adsorbent. The adsorbent maintained its removal efficiency after five repeats of the regeneration process. The PB-based, Cs ion-exchange resin showed excellent selectivity toward Cs ions and good reusability, maintaining its high adsorption capacity.


Subject(s)
Benzenesulfonates/chemistry , Cesium/chemistry , Ferrocyanides/chemistry , Ion Exchange Resins/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Humans , Wastewater/chemistry , Water Purification
6.
J Biol Chem ; 294(28): 10900-10912, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31142615

ABSTRACT

The E3 ubiquitin ligase membrane-associated ring-CH-type finger 2 (MARCH2) is known to be involved in intracellular vesicular trafficking, but its role in the early secretory pathway between the endoplasmic reticulum (ER) and Golgi compartments is largely unknown. Human ER-Golgi intermediate compartment protein 2 (ERGIC2) and ERGIC3 are orthologs of Erv41 and Erv46 in yeast, proteins that form a heteromeric complex, cycle between the ER and Golgi, and function as cargo receptors in both anterograde and retrograde protein trafficking. Here, we report that MARCH2 directs ubiquitination and subsequent degradation of ERGIC3 and that MARCH2 depletion increases endogenous ERGIC3 levels. We provide evidence that the lysine residues at positions 6 and 8 of ERGIC3 are the major sites of MARCH2-mediated ubiquitination. Of note, MARCH2 did not significantly decrease the levels of an ERGIC3 variant with lysine-to-arginine substitutions at residues 6 and 8. We also show that ERGIC3 binds to itself or to ERGIC2, whereas ERGIC2 is unable to interact with itself. Our results indicate that α1-antitrypsin and haptoglobin are likely to be cargo proteins of ERGIC3. We further observed that α1-antitrypsin and haptoglobin specifically bind to ERGIC3 and that ERGIC3 depletion decreases their secretion. Moreover, MARCH2 reduced secretion of α1-antitrypsin and haptoglobin, and coexpression of the ubiquitination-resistant ERGIC3 variant largely restored their secretion, suggesting that MARCH2-mediated ERGIC3 ubiquitination is the major cause of the decrease in trafficking of ERGIC3-binding secretory proteins. Our findings provide detailed insights into the regulation of the early secretory pathway by MARCH2 and into ERGIC3 function.


Subject(s)
Membrane Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Carrier Proteins/metabolism , Cell Movement/physiology , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , HeLa Cells , Humans , Protein Transport , Proteolysis , Secretory Pathway , Secretory Vesicles/metabolism , Ubiquitination
7.
Chempluschem ; 84(8): 1130-1134, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31943963

ABSTRACT

A single-benzene-based, blue-emissive diethyl 2,5-dihydroxyterephthalate (DDT) was prepared by Fischer esterification of 2,5-dihydroxyterephthalic acid (DHT) and ethanol. The strong fluorescence in both the solution and the solid state from such a simple framework stemmed from the push-pull structure of the electron-donating hydroxy groups and the accepting carbonyl groups, as well as structural planarity from intramolecular hydrogen bonds. The strong intermolecular hydrogen bonds enabled DDT to crystallize easily. The color CCD imaging technique showed efficient 1D optical waveguiding with a large optical loss coefficient of 0.15 dB/µm. DDT has potential application in optical sensors, photonic devices, and optoelectronic communication, because of its highly ordered structure and light-emitting ability.

8.
Nucleic Acids Res ; 47(2): 762-778, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30445466

ABSTRACT

RNF8 plays a critical role in DNA damage response (DDR) to initiate ubiquitination-dependent signaling. To better characterize the role of RNF8 in UV-induced DDR, we searched for novel substrates of RNF8 and identified NONO as one intriguing substrate. We found that: (i) RNF8 ubiquitinates NONO and (ii) UV radiation triggers NONO ubiquitination and its subsequent degradation. Depletion of RNF8 inhibited UV-induced degradation of NONO, suggesting that RNF8 targets NONO for degradation in response to UV damage. In addition, we found that 3 NONO lysine residues (positions 279, 290 and 295) are important for conferring its instability in UV-DDR. Depletion of RNF8 or expression of NONO with lysine to arginine substitutions at positions 279, 290 and 295 prolonged CHK1 phosphorylation over an extended period of time. Furthermore, expression of the stable mutant, but not wild-type NONO, induced a prolonged S phase following UV exposure. Stable cell lines expressing the stable NONO mutant showed increased UV sensitivity in a clonogenic survival assay. Since RNF8 recruitment to the UV-damaged sites is dependent on ATR, we propose that RNF8-mediated NONO degradation and subsequent inhibition of NONO-dependent chromatin loading of TOPBP1, a key activator of ATR, function as a negative feedback loop critical for turning off ATR-CHK1 checkpoint signaling in UV-DDR.


Subject(s)
DNA Damage , DNA-Binding Proteins/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Octamer Transcription Factors/metabolism , RNA-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line , Checkpoint Kinase 1/metabolism , Humans , Lysine/metabolism , Nuclear Matrix-Associated Proteins/chemistry , Octamer Transcription Factors/chemistry , RNA-Binding Proteins/chemistry , S Phase , Signal Transduction , Ubiquitination , Ultraviolet Rays
9.
J Hazard Mater ; 360: 243-249, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30121354

ABSTRACT

A new approach for efficient removal of radioactive 137Cs was developed using a sodium alginate hydrogel beads-based adsorbent containing chemically bound Prussian blue (PB). Sodium alginate was crosslinked with Fe (III) ions to form hydrogel beads, in which Fe (III) had a dual function; it served as a crosslinking agent and also led to PB formation via reaction with hexacyanoferrate. Fe (III) ions, an unusual crosslinking agent for sodium alginate gel, led to stable, homogeneous distribution of PB inside the beads. The amount of embedded PB in the composite beads was more than two times larger than in the conventional sodium alginate-PB composite beads, resulting in an adsorption capacity for Cs ions that was two to five times higher, mainly because of a higher PB contents and because of the microporosity of the sodium alginate hydrogel.

10.
Biochim Biophys Acta Mol Basis Dis ; 1864(6 Pt A): 2199-2213, 2018 06.
Article in English | MEDLINE | ID: mdl-29635000

ABSTRACT

Dystroglycan is a ubiquitous membrane protein that functions as a mechanical connection between the extracellular matrix and cytoskeleton. In skeletal muscle, dystroglycan plays an indispensable role in regulating muscle regeneration; a malfunction in dystroglycan is associated with muscular dystrophy. The regulation of dystroglycan stability is poorly understood. Here, we report that WWP1, a member of NEDD4 E3 ubiquitin ligase family, promotes ubiquitination and subsequent degradation of ß-dystroglycan. Our results indicate that dystrophin and utrophin protect ß-dystroglycan from WWP1-mediated degradation by competing with WWP1 for the shared binding site at the cytosolic tail of ß-dystroglycan. In addition, we show that a missense mutation (arginine 440 to glutamine) in WWP1-which is known to cause muscular dystrophy in chickens-increases the ubiquitin ligase-mediated ubiquitination of both ß-dystroglycan and WWP1. The R440Q missense mutation in WWP1 decreases HECT domain-mediated intramolecular interactions to relieve autoinhibition of the enzyme. Our results provide new insight into the regulation of ß-dystroglycan degradation by WWP1 and other Nedd4 family members and improves our understanding of dystroglycan-related disorders.


Subject(s)
Dystroglycans/metabolism , Dystrophin/metabolism , Muscular Dystrophies/pathology , Ubiquitin-Protein Ligases/metabolism , Utrophin/metabolism , Animals , Binding Sites , Gene Knockdown Techniques , HeLa Cells , Humans , Mice , Muscular Dystrophies/genetics , Mutation, Missense , Protein Domains/genetics , Protein Stability , Proteolysis , RNA, Small Interfering/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Utrophin/genetics
11.
FEBS J ; 283(24): 4583-4599, 2016 12.
Article in English | MEDLINE | ID: mdl-27808481

ABSTRACT

The protease-associated (PA) domain-containing E3 ubiquitin ligases are transmembrane proteins located in intracellular organelles such as the endoplasmic reticulum, endosomes, or lysosomes. The functional roles of these ubiquitin ligases are not well defined. To understand the function of E3 ubiquitin ligases, identification of their substrates is of critical importance. In this study, we describe a newly devised method based on proximity-dependent biotin labeling to identify substrates of ubiquitin ligases. Application of this method to RING finger protein 167 (RNF167), a member of the PA domain-containing E3 family, led to identification of Arl8B as its substrate. We demonstrated that RNF167 ubiquitinates Arl8B at the lysine residue K141 and reduces the level of the Arl8B protein. Overexpression and knockdown of RNF167 revealed its regulatory role in Arl8B-dependent lysosome positioning and endocytic trafficking to lysosomes. Furthermore, we found that the ubiquitination-defective Arl8B K141R mutant counteracts RNF167 in these cellular events. These results indicate that RNF167 plays a crucial role as an E3 ubiquitin ligase targeting Arl8B to regulate lysosome positioning and endocytic trafficking.


Subject(s)
ADP-Ribosylation Factors/metabolism , Endocytosis , Endosomes/metabolism , Lysosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , ADP-Ribosylation Factors/genetics , Binding Sites/genetics , HeLa Cells , Humans , Immunoblotting , Lysine/genetics , Lysine/metabolism , Microscopy, Confocal , Mutation , Protein Transport , Proteolysis , RNA Interference , Ubiquitin-Protein Ligases/genetics , Ubiquitination
12.
Biochem Biophys Res Commun ; 480(2): 280-287, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27769858

ABSTRACT

Signaling through many transmembrane receptors is terminated by their sorting to the intraluminal vesicles (ILVs) of multivescular bodies (MVBs) and subsequent lysosomal degradation. ILV formation requires the endosomal sorting complex required for transport (ESCRT) machinery. CC2D1A and CC2D1B interact with the CHMP4 family of proteins, the major subunit of the ESCRT-III complex, however, their roles in receptor degradation and signaling are poorly defined. Here, we report that CC2D1A binds to CHMP4B polymers formed on endosomes to regulate the endosomal sorting pathway. We show that depletion of CC2D1A and B accelerates degradation of EGFR and elicits rapid termination of its downstream signaling through ERK1 and 2. Depletion of CC2D1A and B promotes sorting of EGFR to ILV leading to its rapid lysosomal degradation. In addition, we show that knockdown of CC2D1A and B has similar effects on degradation and downstream signaling of another membrane receptor, TLR4. Thus, these findings suggest that CC2D1A and B may have broad effects on transmembrane receptors by preventing premature ILV sorting and termination of signaling.


Subject(s)
DNA-Binding Proteins/metabolism , ErbB Receptors/metabolism , Repressor Proteins/metabolism , Toll-Like Receptor 4/metabolism , DNA-Binding Proteins/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/metabolism , HeLa Cells , Humans , Lysosomes/metabolism , Protein Transport , Proteolysis , Repressor Proteins/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...