Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Tissue Eng Regen Med ; 21(2): 209-221, 2024 02.
Article in English | MEDLINE | ID: mdl-37837499

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is characterized by chronic inflammation and joint damage. Methotrexate (MTX), a commonly used disease-modifying anti-rheumatic drug (DMARD) used in RA treatment. However, the continued use of DMARDs can cause adverse effects and result in limited therapeutic efficacy. Cartilage extracellular matrix (CECM) has anti-inflammatory and anti-vascular effects and promotes stem cell migration, adhesion, and differentiation into cartilage cells. METHODS: CECM was assessed the dsDNA, glycosaminoglycan, collagen contents and FT-IR spectrum of CECM. Furthermore, we determined the effects of CECM and MTX on cytocompatibility in the SW 982 cells and RAW 264.7 cells. The anti-inflammatory effects of CECM and MTX were assessed using macrophage cells. Finally, we examined the in vivo effects of CECM in combination with MTX on anti-inflammation control and cartilage degradation in collagen-induced arthritis model. Anti-inflammation control and cartilage degradation were assessed by measuring the serum levels of RA-related cytokines and histology. RESULTS: CECM in combination with MTX had no effect on SW 982, effectively suppressing only RAW 264.7 activity. Moreover, anti-inflammatory effects were enhanced when low-dose MTX was combined with CECM. In a collagen-induced arthritis model, low-dose MTX combined with CECM remarkably reduced RA-related and pro-inflammatory cytokine levels in the blood. Additionally, low-dose MTX combined with CECM exerted the best cartilage-preservation effects compared to those observed in the other therapy groups. CONCLUSION: Using CECM as an adjuvant in RA treatment can augment the therapeutic effects of MTX, reduce existing drug adverse effects, and promote joint tissue regeneration.


Subject(s)
Antirheumatic Agents , Arthritis, Experimental , Arthritis, Rheumatoid , Animals , Humans , Methotrexate/pharmacology , Methotrexate/therapeutic use , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Spectroscopy, Fourier Transform Infrared , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Cytokines/metabolism , Extracellular Matrix/metabolism , Anti-Inflammatory Agents , Cartilage/metabolism
2.
bioRxiv ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-37333210

ABSTRACT

Osteoarthritis (OA) and rheumatoid arthritis (RA) are joint diseases that are associated with pain and lost quality of life. No disease modifying OA drugs are currently available. RA treatments are better established but are not always effective and can cause immune suppression. Here, an MMP13-selective siRNA conjugate was developed that, when delivered intravenously, docks onto endogenous albumin and promotes preferential accumulation in articular cartilage and synovia of OA and RA joints. MMP13 expression was diminished upon intravenous delivery of MMP13 siRNA conjugates, consequently decreasing multiple histological and molecular markers of disease severity, while also reducing clinical manifestations such as swelling (RA) and joint pressure sensitivity (RA and OA). Importantly, MMP13 silencing provided more comprehensive OA treatment efficacy than standard of care (steroids) or experimental MMP inhibitors. These data demonstrate the utility of albumin 'hitchhiking' for drug delivery to arthritic joints, and establish the therapeutic utility of systemically delivered anti-MMP13 siRNA conjugates in OA and RA. Editorial summary: Lipophilic siRNA conjugates optimized for albumin binding and "hitchhiking" can be leveraged to achieve preferential delivery to and gene silencing activity within arthritic joints. Chemical stabilization of the lipophilic siRNA enables intravenous siRNA delivery without lipid or polymer encapsulation. Using siRNA sequences targeting MMP13, a key driver of arthritis-related inflammation, albumin hitchhiking siRNA diminished MMP13, inflammation, and manifestations of osteoarthritis and rheumatoid arthritis at molecular, histological, and clinical levels, consistently outperforming clinical standards of care and small molecule MMP antagonists.

3.
Antioxidants (Basel) ; 11(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36139857

ABSTRACT

The pathophysiology of post-traumatic arthritis (PTOA) is not fully understood. This study used non-invasive repetitive mechanical loading (ML) mouse models to study biochemical, biomechanical, and pain-related behavioral changes induced in mice. Mouse models reflected the effects of the early stages of PTOA in humans. For the PTOA model, cyclic comprehensive loading (9N) was applied to each mouse's left knee joint. ML-induced biochemical and molecular changes were analyzed after loading completion. Cartilage samples were examined using gene expression analysis. Tissue sections were used in subsequent OA severity scoring. Biomechanical features and pain-related behavior were studied after 24 h and three weeks post-ML sessions to examine the development of PTOA. The loaded left knee joint showed a greater ROS/RNS signal than the right knee, which was not loaded. There was a significant increase in cartilage damage and MMP activity in the mechanically loaded joints relative to non-loaded control knee joints. Similarly, we found a difference in the viscoelastic tangent, which highlights significant changes in mechanical properties. Biochemical analyses revealed significant increases in total NO, caspase-3 activity, H2O2, and PGE2 levels. Gene expression analysis highlighted increased catabolism (MMP-13, IL-1ß, TNF-α) with a concomitant decrease in anabolism (ACAN, COL2A1). Histopathology scores clearly indicated increases in OA progression and synovitis. The gait pattern was significantly altered, suggesting signs of joint damage. This study showed that biomechanical, biochemical, and behavioral characteristics of the murine PTOA groups are significantly different from the control group. These results confirm that the current mouse model can be considered for translational PTOA studies.

4.
ACS Nano ; 15(9): 14475-14491, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34409835

ABSTRACT

Post-traumatic osteoarthritis (PTOA) associated with joint injury triggers a degenerative cycle of matrix destruction and inflammatory signaling, leading to pain and loss of function. Here, prolonged RNA interference (RNAi) of matrix metalloproteinase 13 (MMP13) is tested as a PTOA disease modifying therapy. MMP13 is upregulated in PTOA and degrades the key cartilage structural protein type II collagen. Short interfering RNA (siRNA) loaded nanoparticles (siNPs) were encapsulated in shape-defined poly(lactic-co-glycolic acid) (PLGA) based microPlates (µPLs) to formulate siNP-µPLs that maintained siNPs in the joint significantly longer than delivery of free siNPs. Treatment with siNP-µPLs against MMP13 (siMMP13-µPLs) in a mechanical load-induced mouse model of PTOA maintained potent (65-75%) MMP13 gene expression knockdown and reduced MMP13 protein production in joint tissues throughout a 28-day study. MMP13 silencing reduced PTOA articular cartilage degradation/fibrillation, meniscal deterioration, synovial hyperplasia, osteophytes, and pro-inflammatory gene expression, supporting the therapeutic potential of long-lasting siMMP13-µPL therapy for PTOA.


Subject(s)
Drug Delivery Systems , Joints/injuries , Matrix Metalloproteinase 13/administration & dosage , Osteoarthritis , Animals , Matrix Metalloproteinase 13/genetics , Mice , Nanoparticles , Osteoarthritis/therapy , RNA, Small Interfering
5.
Nat Biomed Eng ; 5(9): 1069-1083, 2021 09.
Article in English | MEDLINE | ID: mdl-34413494

ABSTRACT

The progression of osteoarthritis is associated with inflammation triggered by the enzymatic degradation of extracellular matrix in injured cartilage. Here we show that a locally injected depot of nanoparticles functionalized with an antibody targeting type II collagen and carrying small interfering RNA targeting the matrix metalloproteinase 13 gene (Mmp13), which breaks down type II collagen, substantially reduced the expression of MMP13 and protected cartilage integrity and overall joint structure in acute and severe mouse models of post-traumatic osteoarthritis. MMP13 inhibition suppressed clusters of genes associated with tissue restructuring, angiogenesis, innate immune responses and proteolysis. We also show that intra-articular injections of the nanoparticles led to greater reductions in disease progression than either a single injection or weekly injections of the steroid methylprednisolone. Sustained drug retention by targeting collagen in the damaged extracellular matrix of osteoarthritic cartilage may also be an effective strategy for the treatment of osteoarthritis with other disease-modifying drugs.


Subject(s)
Nanoparticles , Osteoarthritis , Animals , Cartilage , Collagen Type II , Mice , Osteoarthritis/complications , RNA, Small Interfering/genetics
6.
Curr Osteoporos Rep ; 19(2): 166-174, 2021 04.
Article in English | MEDLINE | ID: mdl-33523424

ABSTRACT

PURPOSE OF REVIEW: Many mechanical load-bearing joints of the body are prone to posttraumatic osteoarthritis (PTOA), including the knee joint and temporomandibular joint (TMJ). Early detection of PTOA can be beneficial in prevention or alleviating further progression of the disease. RECENT FINDINGS: Various mouse models, similar to those used in development of novel diagnosis strategies for early stages of OA, have been proposed to study early PTOA. While many studies have focused on OA and PTOA in the knee joint, early diagnostic methods for OA and PTOA of the TMJ are still not well established. Previously, we showed that fluorescent near-infrared imaging can diagnose inflammation and cartilage damage in mouse models of knee PTOA. Here we propose that the same approach can be used for early diagnosis of TMJ-PTOA. In this review, we present a brief overview of PTOA, application of relevant mouse models, current imaging methods available to examine TMJ-PTOA, and the prospects of near-infrared optical imaging to diagnose early-stage TMJ-OA.


Subject(s)
Osteoarthritis/diagnosis , Animals , Diagnostic Imaging , Disease Models, Animal , Disease Progression , Early Diagnosis , Humans , Mice , Osteoarthritis/pathology , Osteoarthritis, Knee/diagnosis , Osteoarthritis, Knee/pathology , Temporomandibular Joint Disorders/diagnosis , Temporomandibular Joint Disorders/pathology
7.
Int J Nanomedicine ; 14: 8835-8846, 2019.
Article in English | MEDLINE | ID: mdl-31806974

ABSTRACT

BACKGROUND: Inflammatory stress caused by protein kinase D (PKD) plays a critical role in damaging chondrocytes and extracellular matrix (ECM) during osteoarthritis (OA). The PKD inhibitor (PKDi) (CRT0066101) has been used to overcome inflammation in different cell types. However, the efficacy of a therapeutic drug can be limited due to off-target distribution, slow cellular internalization, and limited lysosomal escape. In order to overcome this issue, we developed nanosomes carrying CRT0066101 (PKDi-Nano) and tested their efficacy in vitro in chondrocytes. METHODS: Chondrocytes were subjected to IL-1ß-induced inflammatory stress treated with either PKDi or PKDi-Nano. Effects of treatment were measured in terms of cytotoxicity, cellular morphology, viability, apoptosis, phosphorylation of protein kinase B (Akt), and anabolic/catabolic gene expression analyses related to cartilage tissue. RESULTS AND DISCUSSION: The effects of PKDi-Nano treatment were more pronounced as compared to PKDi treatment. Cytotoxicity and apoptosis were significantly reduced following PKDi-Nano treatment (P < 0.001). Cellular morphology was also restored to normal size and shape. The viability of chondrocytes was significantly enhanced in PKDi-Nano-treated cells (P < 0.001). The data indicated that PKDi-Nano acted independently of the Akt pathway. Gene expression analyses revealed significant increases in the expression levels of anabolic genes with concomitant decreases in the level of catabolic genes. Our results indicate that PKDi-Nano attenuated the effects of IL-1ß via the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) pathway. CONCLUSION: Taken together, these results suggest that PKDi-Nano can be used as a successful strategy to reduce IL1ß-induced inflammatory stress in chondrocytes.


Subject(s)
Chondrocytes/drug effects , Nanostructures/administration & dosage , Protein Kinase C/antagonists & inhibitors , Pyrimidines/administration & dosage , Animals , Apoptosis/drug effects , Cells, Cultured , Chondrocytes/metabolism , Chondrocytes/pathology , Gene Expression Regulation/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Interleukin-1beta/metabolism , Interleukin-1beta/toxicity , NF-kappa B/metabolism , Nanostructures/chemistry , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Oxidative Stress/drug effects , Phosphorylation/drug effects , Protective Agents/administration & dosage , Protective Agents/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/pharmacology , Swine
8.
PLoS One ; 14(12): e0226145, 2019.
Article in English | MEDLINE | ID: mdl-31809526

ABSTRACT

Toll-like receptor (TLR) signaling can contribute to the pathogenesis of arthritis. Disruption of TLR signaling at early stages of arthritis might thereby provide an opportunity to halt the disease progression and ameliorate outcomes. We previously found that Gö6976 inhibits TLR-mediated cytokine production in human and mouse macrophages by inhibiting TLR-dependent activation of protein kinase D1 (PKD1), and that PKD1 is essential for proinflammatory responses mediated by MyD88-dependent TLRs. In this study, we investigated whether PKD1 contributes to TLR-mediated proinflammatory responses in human synovial cells, and whether Gö6976 treatment can suppress the development and progression of type II collagen (CII)-induced arthritis (CIA) in mouse. We found that TLR/IL-1R ligands induced activation of PKD1 in human fibroblast-like synoviocytes (HFLS). TLR/IL-1R-induced expression of cytokines/chemokines was substantially inhibited in Gö6976-treated HFLS and PKD1-knockdown HFLS. In addition, serum levels of anti-CII IgG antibodies, and the incidence and severity of arthritis after CII immunization were significantly reduced in mice treated daily with Gö6976. Synergistic effects of T-cell receptor and TLR, as well as TLR alone, on spleen cell proliferation and cytokine production were significantly inhibited in the presence of Gö6976. Our results suggest a possibility that ameliorating effects of Gö6976 on CIA may be due to its ability to inhibit TLR/IL-1R-activated PKD1, which might play an important role in proinflammatory responses in arthritis, and that PKD1 could be a therapeutic target for inflammatory arthritis.


Subject(s)
Arthritis, Experimental/drug therapy , Carbazoles/administration & dosage , Collagen Type II/adverse effects , Synoviocytes/enzymology , TRPP Cation Channels/antagonists & inhibitors , Animals , Arthritis, Experimental/enzymology , Arthritis, Experimental/immunology , Carbazoles/pharmacology , Cells, Cultured , Humans , Mice , Receptors, Interleukin-1/metabolism , Synoviocytes/drug effects , Synoviocytes/immunology , Toll-Like Receptors/metabolism
9.
Inflammopharmacology ; 27(5): 1011-1019, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30600473

ABSTRACT

In this study, we evaluated the hypothesis that immunonanosomes carrying the drug [5-(p-Fluorophenyl)-2-ureido]thiophene-3-carboxamide (TPCA-1) will help in reducing nuclear factor-kappaB (NF-κB)-associated inflammation in porcine chondrocytes against tumor necrosis factor-alpha (TNF-α)-induced stress. The nanosomes were tagged with monoclonal anti-type II collagen (MabCII) antibody to specifically target the exposed type II collagen in cartilage matrix. TPCA-1 at a concentration of 10 µM significantly reduced expression of the matrix-degrading enzyme, Matrix metalloproteinase-13 (MMP-13) and blocked the p65 nuclear translocation. In comparison to the TPCA-1 solution alone, the TPCA-1 nanosomes were found to be more effective in reducing the cellular toxicity, oxidative stress and inflammation in chondrocytes treated with TNF-α. In addition, TPCA-1 nanosomes were more effective in reducing the gene expression of hypoxia-inducible factor-2alpha (HIF-2α) that in turn is associated with the regulation of MMP-13 gene. TPCA-1 nanosomes significantly reduced expression of both these genes. The data also showed that TPCA-1 did not attenuate the down-regulated gene expression levels of anabolic genes aggrecan (ACAN) and collagen type II alpha (COL2A1). In conclusion, this study showed that TPCA-1 nanosomes carrying a dose of 10 µM TPCA-1 can effectively increase the survival of cultured porcine chondrocytes against TNF-α-induced stress. The findings of this study could be used to develop nanosome-based drug delivery systems (DDSs) for animal model of OA. Moreover, the approach presented here can be further utilized in other studies for targeted delivery of the drug of interest at a cellular level.


Subject(s)
Amides/pharmacology , Anti-Inflammatory Agents/pharmacology , Chondrocytes/drug effects , Inflammation/drug therapy , Thiophenes/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chondrocytes/metabolism , Collagen Type II/metabolism , Down-Regulation/drug effects , Drug Delivery Systems/methods , Gene Expression/drug effects , Inflammation/metabolism , Matrix Metalloproteinase 13/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Signal Transduction/drug effects , Swine
10.
ACS Biomater Sci Eng ; 4(4): 1251-1264, 2018 Apr 09.
Article in English | MEDLINE | ID: mdl-30349873

ABSTRACT

The inherent antioxidant function of poly(propylene sulfide) (PPS) microspheres (MS) was dissected for different reactive oxygen species (ROS), and therapeutic benefits of PPS-MS were explored in models of diabetic peripheral arterial disease (PAD) and mechanically induced post-traumatic osteoarthritis (PTOA). PPS-MS (∼1 µm diameter) significantly scavenged hydrogen peroxide (H2O2), hypochlorite, and peroxynitrite but not superoxide in vitro in cell-free and cell-based assays. Elevated ROS levels (specifically H2O2) were confirmed in both a mouse model of diabetic PAD and in a mouse model of PTOA, with greater than 5- and 2-fold increases in H2O2, respectively. PPS-MS treatment functionally improved recovery from hind limb ischemia based on ∼15-25% increases in hemoglobin saturation and perfusion in the footpads as well as earlier remodeling of vessels in the proximal limb. In the PTOA model, PPS-MS reduced matrix metalloproteinase (MMP) activity by 30% and mitigated the resultant articular cartilage damage. These results suggest that local delivery of PPS-MS at sites of injury-induced inflammation improves the vascular response to ischemic injury in the setting of chronic hyperglycemia and reduces articular cartilage destruction following joint trauma. These results motivate further exploration of PPS as a stand-alone, locally sustained antioxidant therapy and as a material for microsphere-based, sustained local drug delivery to inflamed tissues at risk of ROS damage.

11.
Cell Tissue Res ; 374(1): 111-120, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29951700

ABSTRACT

Survival of mesenchymal stem cells (MSCs) against oxidative stress and inflammation is vital for effective stem cell therapy. The reactive oxygen species (ROS) result in apoptosis and release of inflammatory mediators. Adipose-derived stem cells (ASCs) have shown promise for stem cell therapy owing to their anti-inflammatory and anti-oxidant activity. Previously, we showed the benefits of vitamin E against hydrogen peroxide (H2O2)-induced oxidative stress in rat bone marrow-derived MSCs. In this study, we aim to evaluate the effect of vitamin E treatment on porcine adipose-derived mesenchymal stem cells (pASCs) against H2O2-induced oxidative stress. The oxidative stress was induced by treating pASCs with 500 µM H2O2 with or without vitamin E. Viability of pASCs is enhanced after vitamin E treatment. In addition, reduced cellular toxicity, total NO level, PGE2 production and caspase-3 activity were observed after vitamin E treatment. Gene expression analysis of vitamin E-treated pASCs showed down-regulated expression for the genes associated with oxidative stress and apoptosis, viz., NOS2, Casp3, p53, BAX, MDM2, NFκB, HIF1α and VEGF-A genes. On the other hand, expression of anti-apoptotic and survival genes was up-regulated, viz., BCL2, BCL2L1 and MCL1. Furthermore, phosphorylation of Akt was attenuated following vitamin E treatment. The findings of this study may help in developing effective stem cell therapy for the diseases characterized by the oxidative stress and inflammation.


Subject(s)
Adipose Tissue/metabolism , Hydrogen Peroxide/adverse effects , Mesenchymal Stem Cells/metabolism , Oxidative Stress/drug effects , Vitamin E/therapeutic use , Animals , Disease Models, Animal , Swine , Vitamin E/pharmacology
12.
Int J Nanomedicine ; 13: 1215-1224, 2018.
Article in English | MEDLINE | ID: mdl-29535518

ABSTRACT

BACKGROUND: Early stage osteoarthritis (OA) is clinically asymptomatic due to the avascular and the aneural nature of the cartilage tissue. Nevertheless, early detection of cartilage tissue is critical in order to impede the progression of OA. Hence, in order to develop effective preventive therapy for OA, diagnosis in the early stages is necessary. METHODS: To achieve this goal, we have developed targeted, fluorescent nanosomes conjugated with monoclonal anti-type II collagen antibodies (MabCII) for diagnosis of early OA. The MabCII-coated nanosomes (targeted-nanosomes) bind to the damaged cartilage explants in vitro and in vivo in an OA mouse model that mimics early stage OA. The OA mouse model was induced by destabilization of the medial meniscus (DMM) in 9-10 weeks old C57Bl/6 mice. RESULTS: The targeted-nanosomes enhanced the binding specificity to the cartilage tissue according to the severity of damage. CONCLUSION: We show that MabCII-nanosomes can precisely detect early stage OA in the DMM mouse model. Thus, MabCII-nanosomes have the potential to be used as a non-invasive method for diagnosing the early osteoarthritic lesions.


Subject(s)
Menisci, Tibial/diagnostic imaging , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Osteoarthritis/diagnostic imaging , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Collagen Type II/immunology , Collagen Type II/metabolism , Disease Models, Animal , Fluorescent Dyes/chemistry , Fluorescent Dyes/therapeutic use , Male , Menisci, Tibial/pathology , Mice, Inbred C57BL , Optical Imaging/methods , Osteoarthritis/metabolism , Osteoarthritis/pathology
13.
Int J Mol Sci ; 17(12)2016 Dec 21.
Article in English | MEDLINE | ID: mdl-28009827

ABSTRACT

Dexibuprofen-antioxidant conjugates were synthesized with the aim to reduce its gastrointestinal effects. The esters analogs of dexibuprofen 5a-c were obtained by reacting its -COOH group with chloroacetyl derivatives 3a-c. The in vitro hydrolysis data confirmed that synthesized prodrugs 5a-c were stable in stomach while undergo significant hydrolysis in 80% human plasma and thus release free dexibuprofen. The minimum reversion was observed at pH 1.2 suggesting that prodrugs are less irritating to stomach than dexibuprofen. The anti-inflammatory activity of 5c (p < 0.001) is more significant than the parent dexibuprofen. The prodrug 5c produced maximum inhibition (42.06%) of paw-edema against egg-albumin induced inflammation in mice. Anti-pyretic effects in mice indicated that prodrugs 5a and 5b showed significant inhibition of pyrexia (p < 0.001). The analgesic activity of 5a is more pronounced compared to other synthesized prodrugs. The mean percent inhibition indicated that the prodrug 5a was more active in decreasing the number of writhes induced by acetic acid than standard dexibuprofen. The ulcerogenic activity results assured that synthesized prodrugs produce less gastrointestinal adverse effects than dexibuprofen. The ex vivo antiplatelet aggregation activity results also confirmed that synthesized prodrugs are less irritant to gastrointestinal mucosa than the parent dexibuprofen. Molecular docking analysis showed that the prodrugs 5a-c interacts with the residues present in active binding sites of target protein. The stability of drug-target complexes is verified by molecular dynamic simulation study. It exhibited that synthesized prodrugs formed stable complexes with the COX-2 protein thus support our wet lab results. It is therefore concluded that the synthesized prodrugs have promising pharmacological activities with reduced gastrointestinal adverse effects than the parent drug.


Subject(s)
Cyclooxygenase 2 Inhibitors/chemical synthesis , Ibuprofen/analogs & derivatives , Molecular Docking Simulation , Prodrugs/chemical synthesis , Animals , Blood Platelets/drug effects , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/adverse effects , Cyclooxygenase 2 Inhibitors/pharmacology , Female , Ibuprofen/chemistry , Intestinal Mucosa/drug effects , Male , Mice , Prodrugs/adverse effects , Prodrugs/pharmacology , Protein Binding
14.
Phys Med Rehabil Clin N Am ; 27(4): 855-870, 2016 11.
Article in English | MEDLINE | ID: mdl-27788904

ABSTRACT

"Although there is ample evidence that beneficial results can be obtained from the use of mesenchymal stem cells, several questions regarding their use remain to be answered. For many of these questions, preclinical models will be helpful, but the task of evaluating and implementing these findings for orthopaedic patients falls onto the shoulders of clinical researchers. Evaluation of these questions is a daunting, but such a challenge fits the concept of personalized medicine in today's medicine."


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Precision Medicine , Humans , Stem Cells
15.
Biomed Opt Express ; 7(5): 1842-52, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27231625

ABSTRACT

Detection and intervention at an early stage is a critical factor to impede arthritis progress. Here we present a non-invasive method to detect inflammatory changes in joints of arthritic mice. Inflammation was monitored by dual fluorescence optical imaging for near-infrared fluorescent (750F) matrix-metalloproteinase activatable agent and allophycocyanin-conjugated anti-mouse CD11b. Increased intensity of allophycocyanin (indication of macrophage accumulation) and 750F (indication of matrix-metalloproteinase activity) showed a biological relationship with the arthritis severity score and the histopathology score of arthritic joints. Our results demonstrate that this method can be used to detect early stages of arthritis with minimum intervention in small animal models.

16.
Artif Organs ; 40(10): 1009-1013, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27183538

ABSTRACT

Diagnosis of cartilage damage in early stages of arthritis is vital to impede the progression of disease. In this regard, considerable progress has been made in near-infrared fluorescence (NIRF) optical imaging technique. Arthritis can develop due to various mechanisms but one of the main contributors is the production of matrix metalloproteinases (MMPs), enzymes that can degrade components of the extracellular matrix. Especially, MMP-1 and MMP-13 have main roles in rheumatoid arthritis and osteoarthritis because they enhance collagen degradation in the process of arthritis. We present here a novel NIRF imaging strategy that can be used to determine the activity of MMPs and cartilage damage simultaneously by detection of exposed type II collagen in cartilage tissue. In this study, retro-orbital injection of mixed fluorescent dyes, MMPSense 750 FAST (MMP750) dye and Alexa Fluor 680 conjugated monoclonal mouse antibody immune-reactive to type II collagen, was administered in the arthritic mice. Both dyes were detected with different intensity according to degree of joint destruction in the animal. Thus, our dual fluorescence imaging method can be used to detect cartilage damage as well as MMP activity simultaneously in early stage arthritis.


Subject(s)
Arthritis, Rheumatoid/diagnostic imaging , Cartilage/diagnostic imaging , Collagen Type II/analysis , Joints/diagnostic imaging , Matrix Metalloproteinases/analysis , Optical Imaging/methods , Animals , Fluorescence , Mice, Transgenic
17.
Exp Biol Med (Maywood) ; 241(8): 800-7, 2016 04.
Article in English | MEDLINE | ID: mdl-26851252

ABSTRACT

Osteoarthritis is a nonrheumatologic joint disease characterized by progressive degeneration of the cartilage extracellular matrix. Berberine (BBR) is an isoquinoline alkaloid used in traditional Chinese medicine, the majority of which is extracted from Huang Lian (Coptis chinensis). Although numerous studies have revealed the anticancer activity of BBR, its effects on normal cells, such as chondrocytes, and the molecular mechanisms underlying its actions remain elusive. Therefore, we examined the effects of BBR on rabbit articular chondrocytes, and the underlying molecular mechanisms, focusing on actin cytoskeletal reorganization. BBR induced dedifferentiation by inhibiting activation of phosphoinositide-3(PI3)-kinase/Akt and p38 kinase. Furthermore, inhibition of p38 kinase and PI3-kinase/Akt with SB203580 and LY294002, respectively, accelerated the BBR-induced dedifferentiation. BBR also caused actin cytoskeletal architecture reorganization and, therefore, we investigated if these effects were involved in the dedifferentiation. Disruption of the actin cytoskeleton by cytochalasin D reversed the BBR-induced dedifferentiation by activating PI3-kinase/Akt and p38 kinase. In contrast, the induction of actin filament aggregation by jasplakinolide accelerated the BBR-induced dedifferentiation via PI3-kinase/Akt inhibition and p38 kinase activation. Taken together, these data suggest that BBR strongly induces dedifferentiation, and actin cytoskeletal reorganization is a crucial requirement for this effect. Furthermore, the dedifferentiation activity of BBR appears to be mediated via PI3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes.


Subject(s)
Actins/drug effects , Berberine/pharmacology , Cell Dedifferentiation/drug effects , Chondrocytes/drug effects , Cytoskeleton/drug effects , MAP Kinase Signaling System/drug effects , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Signal Transduction/drug effects , Actins/metabolism , Animals , Blotting, Western , Cells, Cultured , Chondrocytes/metabolism , Cytoskeleton/metabolism , Joints/drug effects , Joints/metabolism , MAP Kinase Signaling System/physiology , Microscopy, Fluorescence , Rabbits , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology
18.
Drug Deliv Transl Res ; 6(2): 132-47, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25990835

ABSTRACT

Osteoarthritis (OA) is a disease characterized by degradation of joints with the development of painful osteophytes in the surrounding tissues. Currently, there are a limited number of treatments for this disease, and many of these only provide temporary, palliative relief. In this review, we discuss particle-based drug delivery systems that can provide targeted and sustained delivery of imaging and therapeutic agents to OA-affected sites. We focus on technologies such as polymeric micelles and nano-/microparticles, liposomes, and dendrimers for their potential treatment and/or diagnosis of OA. Several promising studies are highlighted, motivating the continued development of delivery technologies to improve treatments for OA.


Subject(s)
Delayed-Action Preparations/administration & dosage , Drug Delivery Systems/methods , Osteoarthritis/diagnosis , Osteoarthritis/drug therapy , Animals , Cell-Derived Microparticles , Dendrimers/administration & dosage , Dendrimers/therapeutic use , Humans , Liposomes/administration & dosage , Liposomes/therapeutic use , Micelles , Nanoparticles/administration & dosage , Nanoparticles/therapeutic use
19.
Artif Organs ; 40(2): 190-5, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26147759

ABSTRACT

Disc degeneration and the subsequent herniation and/or rupture of the intervertebral disc (IVD) are due to a failure of the extracellular matrix of the annulus to contain the contents of the nucleus. This results from inadequate maintenance of the matrix components as well as the proteolytic activity of matrix metalloproteinases (MMPs) that degrade matrix molecules. Arresting progression of disc degeneration in the annulus holds greater clinical potential at this point than prevention of its onset in the nucleus. Therefore, in this study, we have therapeutic aims that would decrease levels of the cytokines and growth factors that indirectly lead to disc degeneration via stimulating MMP and increase levels of several beneficial growth factors, such as transforming growth factor-ß, with the addition of platelet-rich plasma (PRP) that would stimulate cell growth and matrix synthesis. For this study, we attempted to address these imbalances of metabolism by using tumor necrosis factor-α treated annulus fibrosus cells isolated from porcine IVD tissue and incubating the cells in a growth factor rich environment with PRP. These results indicate that the PRP in vitro increased the production of the major matrix components (type II collagen and aggrecan) and decreased the inhibitory collagenase MMP-1. This application will address a therapeutic approach for intervening early in the degenerative process.


Subject(s)
Intervertebral Disc Degeneration/therapy , Intervertebral Disc/pathology , Platelet-Rich Plasma/metabolism , Animals , Cells, Cultured , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Matrix Metalloproteinases/metabolism , Swine
20.
Biomed Res Int ; 2015: 595273, 2015.
Article in English | MEDLINE | ID: mdl-26000299

ABSTRACT

Patients with osteoarthritis (OA), a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase-2 (COX-2) selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs) and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM). To compare the effects of these treatments on chondrocyte metabolism, TNF-α was incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2). The chondrocytes were then treated with either a steroid (prednisone), a nonspecific COX inhibitor NSAID (piroxicam), or a COX-2 selective NSAID (celecoxib). Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxib in vivo was investigated using a posttraumatic OA (PTOA) mouse model. In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 production in vitro and that celecoxib may demonstrate beneficial effects on anabolic metabolism in vivo.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cyclooxygenase 2 Inhibitors/therapeutic use , Osteoarthritis/drug therapy , Steroids/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cartilage/drug effects , Cartilage/pathology , Cell Survival/drug effects , Chondrocytes/drug effects , Chondrocytes/pathology , Disease Models, Animal , Fluorescent Dyes/metabolism , Gene Expression Regulation/drug effects , Humans , Knee Joint/pathology , Male , Matrix Metalloproteinase 1/metabolism , Mice, Inbred C57BL , Osteoarthritis/pathology , Steroids/pharmacology , Sus scrofa , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL