Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Nanomedicine ; 16: 7307-7317, 2021.
Article in English | MEDLINE | ID: mdl-34737568

ABSTRACT

PURPOSE: This paper presents a technique for developing a novel surface for dental implants using a combination of nitriding and anodic oxidation, followed by the deposition of graphene oxide using atmospheric plasma. The effects of various surface treatments on bacterial adhesion and osteoblast activation were also evaluated. METHODS: CP titanium (control) was processed into disk-shaped specimens. Nitriding was conducted using vacuum nitriding, followed by anodic oxidation, which was performed in an electrolyte using a DC power supply, to form the novel "mulberry surface." Graphene oxide deposition was performed using atmospheric plasma with an inflow of carbon sources. After analyzing the sample surfaces, antibacterial activity was evaluated using Streptococcus mutans and Porphyromonas gingivalis bacteria. The viability, adhesion, proliferation, and differentiation of osteoblasts were also assessed. Analysis of variance (ANOVA) with Tukey's post-hoc test was used to calculate statistical differences. RESULTS: We observed that the mulberry surface was formed on samples treated with nitriding and anodic oxidation, and these samples exhibited more effective antibacterial activity than the control. We also found that the samples with additional graphene oxide deposition exhibited better biocompatibility, which was validated by osteoblast adhesion, proliferation, and differentiation. CONCLUSION: The development of the mulberry surface along with graphene oxide deposition inhibits bacterial adhesion to the implant and enhances the adhesion, proliferation, and differentiation of osteoblasts. These results indicate that the mulberry surface and graphene oxide deposition together can inhibit peri-implantitis and promote osseointegration.


Subject(s)
Morus , Nanopores , Graphite , Osteoblasts , Surface Properties , Titanium
2.
Int J Nanomedicine ; 16: 5745-5754, 2021.
Article in English | MEDLINE | ID: mdl-34471350

ABSTRACT

OBJECTIVE: To determine the effects of graphene oxide (GO) deposition (on a zirconia surface) on bacterial adhesion and osteoblast activation. METHODS: An atmospheric pressure plasma generator (PGS-300) was used to coat Ar/CH4 mixed gas onto zirconia specimens (15-mm diameter × 2.5-mm thick disks) at a rate of 10 L/min and 240 V. Zirconia specimens were divided into two groups: uncoated (control; Zr) group and GO-coated (Zr-GO) group. Surface characteristics and element structures of each specimen were evaluated by field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and contact angle. Additionally, crystal violet staining was performed to assess the adhesion of Streptococcus mutans. WST-8 and ALP (Alkaline phosphatase) assays were conducted to evaluate MC3T3-E1 osteoblast adhesion, proliferation, and differentiation. Statistical analysis was calculated by the Mann-Whitney U-test. RESULTS: FE-SEM and Raman spectroscopy demonstrated effective GO deposition on the zirconia surface in Zr-GO. The attachment and biofilm formation of S. mutans was significantly reduced in Zr-GO compared with that of Zr (P < 0.05). While no significant differences in cell attachment of MC3T3-1 were observed, both proliferation and differentiation were increased in Zr-GO as compared with that of Zr (P < 0.05). SIGNIFICANCE: GO-coated zirconia inhibited the attachment of S. mutans and stimulated proliferation and differentiation of osteoblasts. Therefore, GO-coated zirconia can prevent peri-implantitis by inhibiting bacterial adhesion. Moreover, its osteogenic ability can increase bone adhesion and success rate of implants.


Subject(s)
Anti-Infective Agents , Dental Implants , Cell Proliferation , Graphite , Osteoblasts , Osteogenesis , Surface Properties , Titanium , Zirconium
3.
J Nanosci Nanotechnol ; 20(9): 5771-5774, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32331177

ABSTRACT

The purpose of this study was to examine the effect of plasma treatment by treating the surface of Co-Cr alloy, Ti-6Al-4V alloy, and CP-Ti alloy as a material for denture metal frameworks with non-thermal atmospheric pressure plasma (NTAPP) and measuring their shear bond strength (SBS) with a heat-cured resin. 20 specimens were prepared for each of Co-Cr, Ti-6Al-4V, and CP-Ti alloys. Each metal alloy group was divided into the following subgroups depending on NTAPP treatment: C (Co-Cr alloy without plasma), T (CP-Ti without plasma), A (Ti-6Al-4V alloy without plasma), CP (Co-Cr alloy with plasma), TP (CP-Ti with plasma) and AP (Ti-6Al-4V alloy with plasma). Specimens were treated with a metal conditioner and bonded to a denture base resin. SBS was measured using a universal testing machine. All data obtained were statistically analyzed using two-way analysis of variance (ANOVA), Tukey's honestly significant difference (HSD) test, and independent t-test. The mean values (SD) of SBS (MPa) were: 10.31 (1.19) for C group; 12.43 (0.98) for T group; 13.75 (2.02) for A group; 13.53 (1.61) for CP group; 16.87 (1.55) for TP group; 17.46 (1.65) for AP group. The SBS of the AP group was the highest while that of the C group was the lowest. SBS of specimen treated with NTAPP was significantly increased regardless of metal alloy types (p < 0.001). Within the limitations of this study, NTAPP can increases the SBS of Co-Cr alloy, CP-Ti alloy, and Ti-6Al-4V alloy with a denture base resin.


Subject(s)
Denture Bases , Titanium , Alloys , Chromium Alloys , Dental Alloys , Materials Testing , Shear Strength , Surface Properties
4.
EJNMMI Phys ; 2(1): 6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26501808

ABSTRACT

BACKGROUND: Simultaneous PET/MR imaging depends on MR-derived attenuation maps (mu-maps) for accurate attenuation correction of PET data. Currently, these maps are derived from gradient-echo-based MR sequences, which are sensitive to susceptibility changes. Iron oxide magnetic nanoparticles have been used in the measurement of blood volume, tumor microvasculature, tumor-associated macrophages, and characterizing lymph nodes. Our aim in this study was to assess whether the susceptibility effects associated with iron oxide nanoparticles can potentially affect measured (18)F-FDG PET standardized uptake values (SUV) through effects on MR-derived attenuation maps. METHODS: The study protocol was approved by the Institutional Animal Care and Use Committee. Using a Siemens Biograph mMR PET/MR scanner, we evaluated the effects of increasing concentrations of ferumoxytol and ferumoxytol aggregates on MR-derived mu-maps using an agarose phantom. In addition, we performed a baboon experiment evaluating the effects of a single i.v. ferumoxytol dose (10 mg/kg) on the liver, spleen, and pancreas (18)F-FDG SUV at baseline (ferumoxytol-naïve), within the first hour and at 1, 3, 5, and 11 weeks. RESULTS: Phantom experiments showed mu-map artifacts starting at ferumoxytol aggregate concentrations of 10 to 20 mg/kg. The in vivo baboon data demonstrated a 53% decrease of observed (18)F-FDG SUV compared to baseline within the first hour in the liver, persisting at least 11 weeks. CONCLUSIONS: A single ferumoxytol dose can affect measured SUV for at least 3 months, which should be taken into account when administrating ferumoxytol in patients needing sequential PET/MR scans. Advances in knowledge 1. Ferumoxytol aggregates, but not ferumoxytol alone, produce significant artifacts in MR-derived attenuation correction maps at approximate clinical dose levels of 10 mg/kg. 2. When performing simultaneous whole-body (18)F-FDG PET/MR, a single dose of ferumoxytol can result in observed SUV decreases up to 53%, depending on the amount of ferumoxytol aggregates in the studied tissue. Implications for patient care Administration of a single, clinically relevant, dose of ferumoxytol can potentially result in changes in observed SUV for a prolonged period of time in the setting of simultaneous PET/MR. These potential changes should be considered in particular when administering ferumoxytol to patients with expected future PET/MR studies, as ferumoxytol-induced SUV changes might interfere with therapy assessment.

5.
Mol Imaging ; 13: 1-11, 2014.
Article in English | MEDLINE | ID: mdl-24824854

ABSTRACT

Esophageal tumors provide unique challenges and opportunities for developing and testing surveillance imaging technology for different tumor microenvironment components, including assessment of immune cell modulation, with the ultimate goal of promoting early detection and response evaluation. In this context, accessibility through the lumen using a minimally invasive approach provides a means for repetitive evaluation longitudinally by combining fluorescent endoscopic imaging technology with novel fluorescent nanoparticles that are phagocytized by immune cells in the microenvironment. The agent we developed for imaging is synthesized from Feraheme (ferumoxytol), a Food and Drug Administration-approved monocrystaline dextran-coated iron oxide nanoparticle, which we conjugated to a near-infrared fluorochrome, CyAL5.5. We demonstrate a high level of uptake of the fluorescent nanoparticles by myeloid-derived suppressor cells (MDSCs) in the esophagus and spleen of L2Cre;p120ctnflox/flox mice. These mice develop esophageal dysplasia leading to squamous cell carcinoma; we have previously demonstrated that dysplastic and neoplastic esophageal lesions in these mice have an immune cell infiltration that is dominated by MDSCs. In the L2Cre;p120ctnflox/flox mice, evaluation of the spleen reveals that nearly 80% of CD45+ leukocytes that phagocytized the nanoparticle were CD11b+Gr1+ MDSCs. After dexamethasone treatment, we observed concordant decreased fluorescent signal from esophageal lesions during fluorescent endoscopy and decreased CyAL5.5-fluorescent-positive immune cell infiltration in esophageal dysplastic lesions by fluorescence-activated cell sorting analysis. Our observations suggest that this translatable technology may be used for the early detection of dysplastic changes and the serial assessment of immunomodulatory therapy and to visualize changes in MDSCs in the esophageal tumor microenvironment.


Subject(s)
Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/surgery , Esophageal Neoplasms/immunology , Esophageal Neoplasms/surgery , Ferrosoferric Oxide/chemistry , Leukocyte Common Antigens/immunology , Animals , Antineoplastic Agents, Hormonal/administration & dosage , Carbocyanines/pharmacokinetics , Carcinoma, Squamous Cell/diagnosis , Cells, Cultured , Dexamethasone/administration & dosage , Dimethyl Sulfoxide/pharmacology , Endoscopy , Endoscopy, Gastrointestinal , Esophageal Neoplasms/diagnosis , Ferrosoferric Oxide/pharmacokinetics , Fluorescent Dyes/pharmacokinetics , Indoles/pharmacokinetics , Leukocytes , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Nanoparticles/chemistry , Spleen/immunology
6.
Small ; 7(18): 2549-67, 2011 Sep 19.
Article in English | MEDLINE | ID: mdl-21648074

ABSTRACT

This article reviews advances in the design and development of multifunctional carbon-based and/or magnetic nanoparticle systems (or simply 'nanocarriers') for early cancer diagnosis and spatially and temporally controlled therapy. The critical issues in cancer diagnosis and treatment are addressed based on novel nanotechnologies such as real-time in-vivo imaging, drug storage and release, and specific cancer-cell targeting. The implementation of nanocarriers into animal models and the subsequent effectiveness in treating tumors is also reviewed. Recommendations for future research are given.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Carriers/therapeutic use , Nanoparticles/therapeutic use , Neoplasms/diagnosis , Neoplasms/therapy , Animals , Drug Delivery Systems/methods , Humans , Molecular Targeted Therapy
7.
ACS Nano ; 4(9): 5398-404, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20707381

ABSTRACT

For early cancer diagnosis and treatment, a nanocarrier system is designed and developed with key components uniquely structured at nanoscale according to medical requirements. For imaging, quantum dots with emissions in the near-infrared range (∼800 nm) are conjugated onto the surface of a nanocomposite consisting of a spherical polystyrene matrix (∼150 nm) and the internally embedded, high fraction of superparamagnetic Fe(3)O(4) nanoparticles (∼10 nm). For drug storage, the chemotherapeutic agent paclitaxel (PTX) is loaded onto the surfaces of these composite multifunctional nanocarriers by using a layer of biodegradable poly(lactic-co-glycolic acid) (PLGA). A cell-based cytotoxicity assay is employed to verify successful loading of pharmacologically active drug. Cell viability of human, metastatic PC3mm2 prostate cancer cells is assessed in the presence and absence of various multifunctional nanocarrier populations using the MTT assay. PTX-loaded composite nanocarriers are synthesized by conjugating anti-prostate specific membrane antigen (anti-PSMA) for targeting. Specific detection studies of anti-PSMA-conjugated nanocarrier binding activity in LNCaP prostate cancer cells are carried out. LNCaP cells are targeted successfully in vitro by the conjugation of anti-PSMA on the nanocarrier surfaces. To further explore targeting, the nanocarriers conjugated with anti-PSMA are intravenously injected into tumor-bearing nude mice. Substantial differences in fluorescent signals are observed ex vivo between tumor regions treated with the targeted nanocarrier system and the nontargeted nanocarrier system, indicating considerable targeting effects due to anti-PSMA functionalization of the nanocarriers.


Subject(s)
Drug Carriers/chemistry , Drug Carriers/metabolism , Magnetite Nanoparticles/chemistry , Molecular Imaging/methods , Nanomedicine/methods , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Humans , Lactic Acid/chemistry , Male , Mice , Paclitaxel/chemistry , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Quantum Dots
SELECTION OF CITATIONS
SEARCH DETAIL