Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 3665, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574427

ABSTRACT

Transposable elements cause alternative splicing (AS) in different ways, contributing to transcript diversification. Alternative polyadenylation (APA), one of the AS events, is related to the generation of mRNA isoforms in 70% of human genes. In this study, we tried to investigate AluYRa1s located at the terminal region of cynomolgus monkey genes, utilizing both computational analysis and molecular experimentation. We found that ten genes had AluYRa1 at their 3' end, and nine of these AluYRa1s were sense-oriented. Furthermore, in seven genes, AluYRa1s were expected to have a similar consensus sequence for polyadenylation cleavage. Additional computational analysis using the annotation files from the UCSC database showed that AluYRa1 was more involved in polyadenylation than in open reading frame exon splicing. To examine the extent of AluYRa1 involvement in polyadenylation, RNA-seq data from 30 normal cynomolgus monkeys were analyzed using TAPAS, a recently devised software that detects all the promising polyadenylation sites including APA sites. We observed that approximately 74% of possible polyadenylation sites in the analyzed genes were provided by sense-oriented AluYRa1. In conclusion, AluYRa1 is an Old-World monkey-specific TE, and its sense-oriented insertion at the 3'UTR region tends to provide a favorable environment for polyadenylation, diversifying gene transcripts.


Subject(s)
Alu Elements/genetics , Evolution, Molecular , Polyadenylation/genetics , Transcription, Genetic , 3' Untranslated Regions/genetics , Alternative Splicing/genetics , Animals , Cell Lineage/genetics , Humans , Macaca fascicularis/genetics , RNA Isoforms/genetics , RNA Splicing/genetics , Software
2.
Aging (Albany NY) ; 13(1): 846-864, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33290253

ABSTRACT

African green monkeys (AGMs, Chlorocebus aethiops) are Old World monkeys which are used as experimental models in biomedical research. Recent technological advances in next generation sequencing are useful for unraveling the genetic mechanisms underlying senescence, aging, and age-related disease. To elucidate the normal aging mechanisms in older age, the blood transcriptomes of nine healthy, aged AGMs (15‒23 years old), were analyzed over two years. We identified 910‒1399 accumulated differentially expressed genes (DEGs) in each individual, which increased with age. Aging-related DEGs were sorted across the three time points. A major proportion of the aging-related DEGs belonged to gene ontology (GO) categories involved in translation and rRNA metabolic processes. Next, we sorted common aging-related DEGs across three time points over two years. Common aging-related DEGs belonged to GO categories involved in translation, cellular component biogenesis, rRNA metabolic processes, cellular component organization, biogenesis, and RNA metabolic processes. Furthermore, we identified 29 candidate aging genes that were upregulated across the time series analysis. These candidate aging genes were linked to protein synthesis. This study describes a changing gene expression pattern in AGMs during aging using longitudinal transcriptome sequencing. The candidate aging genes identified here may be potential targets for the treatment of aging.


Subject(s)
Aging/genetics , Mitochondrial Membranes/metabolism , Proteasome Endopeptidase Complex/genetics , Ribosomes/genetics , Spliceosomes/genetics , Animals , Chlorocebus aethiops , Gene Expression Profiling , Gene Ontology , Longitudinal Studies , Protein Biosynthesis/genetics , Protein Folding , RNA/metabolism , RNA Splicing/genetics , RNA, Ribosomal/metabolism , RNA-Seq , Ribosome Subunits/genetics
3.
BMC Evol Biol ; 20(1): 66, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32503430

ABSTRACT

BACKGROUND: Alternative splicing (AS) generates various transcripts from a single gene and thus plays a significant role in transcriptomic diversity and proteomic complexity. Alu elements are primate-specific transposable elements (TEs) and can provide a donor or acceptor site for AS. In a study on TE-mediated AS, we recently identified a novel AluSz6-exonized ACTR8 transcript of the crab-eating monkey (Macaca fascicularis). In the present study, we sought to determine the molecular mechanism of AluSz6 exonization of the ACTR8 gene and investigate its evolutionary and functional consequences in the crab-eating monkey. RESULTS: We performed RT-PCR and genomic PCR to analyze AluSz6 exonization in the ACTR8 gene and the expression of the AluSz6-exonized transcript in nine primate samples, including prosimians, New world monkeys, Old world monkeys, and hominoids. AluSz6 integration was estimated to have occurred before the divergence of simians and prosimians. The Alu-exonized transcript obtained by AS was lineage-specific and expressed only in Old world monkeys and apes, and humans. This lineage-specific expression was caused by a single G duplication in AluSz6, which provides a new canonical 5' splicing site. We further identified other alternative transcripts that were unaffected by the AluSz6 insertion. Finally, we observed that the alternative transcripts were transcribed into new isoforms with C-terminus deletion, and in silico analysis showed that these isoforms do not have a destructive function. CONCLUSIONS: The single G duplication in the TE sequence is the source of TE exonization and AS, and this mutation may suffer a different fate of ACTR8 gene expression during primate evolution.


Subject(s)
Gene Expression Regulation , Microfilament Proteins/genetics , Mutation , Primates/genetics , Alternative Splicing , Alu Elements/genetics , Animals , DNA Transposable Elements/genetics , Evolution, Molecular , Exons/genetics , Humans
4.
BMC Evol Biol ; 19(1): 196, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666001

ABSTRACT

BACKGROUND: The BLOC1S2 gene encodes the multifunctional protein BLOS2, a shared subunit of two lysosomal trafficking complexes: i) biogenesis of lysosome-related organelles complex-1 and i) BLOC-1-related complex. In our previous study, we identified an intriguing unreported transcript of the BLOC1S2 gene that has a novel exon derived from two transposable elements (TEs), MIR and AluSp. To investigate the evolutionary footprint and molecular mechanism of action of this transcript, we performed PCR and RT-PCR experiments and sequencing analyses using genomic DNA and RNA samples from humans and various non-human primates. RESULTS: The results showed that the MIR element had integrated into the genome of our common ancestor, specifically in the BLOC1S2 gene region, before the radiation of all primate lineages and that the AluSp element had integrated into the genome of our common ancestor, fortunately in the middle of the MIR sequences, after the divergence of Old World monkeys and New World monkeys. The combined MIR and AluSp sequences provide a 3' splice site (AG) and 5' splice site (GT), respectively, and generate the Old World monkey-specific transcripts. Moreover, branch point sequences for the intron removal process are provided by the MIR and AluSp combination. CONCLUSIONS: We show for the first time that sequential integration into the same location and sequence divergence events of two different TEs generated lineage-specific transcripts through sequence collaboration during primate evolution.


Subject(s)
Alternative Splicing , DNA Transposable Elements , Evolution, Molecular , Primates/genetics , Alu Elements , Animals , Biological Evolution , Cercopithecidae/classification , Cercopithecidae/genetics , Exons , Humans , Introns , MicroRNAs/genetics , Organ Specificity , Platyrrhini/classification , Platyrrhini/genetics , Primates/classification , Proteins/genetics , Transcriptome
5.
BMC Genomics ; 19(1): 267, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29669513

ABSTRACT

BACKGROUND: The characterization of genomic or epigenomic variation in human and animal models could provide important insight into pathophysiological mechanisms of various diseases, and lead to new developments in disease diagnosis and clinical intervention. The African green monkey (AGM; Chlorocebus aethiops) and cynomolgus monkey (CM; Macaca fascicularis) have long been considered important animal models in biomedical research. However, non-human primate-specific methods applicable to epigenomic analyses in AGM and CM are lacking. The recent development of methyl-capture sequencing (MC-seq) has an unprecedented advantage of cost-effectiveness, and further allows for extending the methylome coverage compared to conventional sequencing approaches. RESULTS: Here, we used a human probe-designed MC-seq method to assay DNA methylation in DNA obtained from 13 CM and three AGM blood samples. To effectively adapt the human probe-designed target region for methylome analysis in non-human primates, we redefined the target regions, focusing on regulatory regions and intragenic regions with consideration of interspecific sequence homology and promoter region variation. Methyl-capture efficiency was controlled by the sequence identity between the captured probes based on the human reference genome and the AGM and CM genome sequences, respectively. Using reasonable guidelines, 56 and 62% of the human-based capture probes could be effectively mapped for DNA methylome profiling in the AGM and CM genome, respectively, according to numeric global statistics. In particular, our method could cover up to 89 and 87% of the regulatory regions of the AGM and CM genome, respectively. CONCLUSIONS: Use of human-based MC-seq methods provides an attractive, cost-effective approach for the methylome profiling of non-human primates at the single-base resolution level.


Subject(s)
Chlorocebus aethiops , DNA Methylation , Epigenomics/methods , Macaca fascicularis , Animals , Genome, Human/genetics , High-Throughput Nucleotide Sequencing , Humans , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
6.
Gene ; 630: 21-27, 2017 Sep 30.
Article in English | MEDLINE | ID: mdl-28756020

ABSTRACT

Tyrosinase is a copper-containing enzyme that regulates melanin biosynthesis and is encoded by the tyrosinase (TYR) gene. Previous studies demonstrated that mutations in TYR could lead to oculocutaneous albinism type 1 (OCA1) owing to the failure of melanin formation. Although a previous study found that albinism in the rhesus monkey was derived from a mutation in TYR, the identification and characterization of this gene in non-human primates has not been achieved thus far. Thus, using the rapid amplification of cDNA ends (RACE) and internal reverse transcription PCR (RT-PCR) we identified the full-length sequence of TYR in the crab-eating macaque, and two different transcript variants (TYR_1 and TYR_2). While TYR_1 comprised five exons and its coding sequence was highly similar to that of humans, TYR_2 comprised four exons and was generated by a third-exon-skipping event. Interestingly, these two transcripts were also present in the African green monkey (Old World monkey) and the common marmoset (New World monkey). Deduced amino acid sequence analyses revealed that TYR_2 had a shorter C-terminal region than TYR_1 owing to the exon-skipping event. Thus, the present study is the first to identify and characterize a full-length TYR gene in a non-human primate, while the further validation of the third-exon-skipping in TYR indicates that this event is well conserved in the primate lineage. Therefore, this study provides useful and important information for the study of albinism using non-human primate models.


Subject(s)
Alternative Splicing , Conserved Sequence , Monophenol Monooxygenase/genetics , Animals , Callithrix , Chlorocebus aethiops , Evolution, Molecular , Exons , Humans , Macaca fascicularis , Monophenol Monooxygenase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Mol Cells ; 40(2): 100-108, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28196413

ABSTRACT

Cathepsin F, which is encoded by CTSF, is a cysteine proteinase ubiquitously expressed in several tissues. In a previous study, novel transcripts of the CTSF gene were identified in the crab-eating monkey deriving from the integration of an Alu element-AluYRa1. The occurrence of AluYRa1-derived alternative transcripts and the mechanism of exonization events in the CTSF gene of human, rhesus monkey, and crab-eating monkey were investigated using PCR and reverse transcription PCR on the genomic DNA and cDNA isolated from several tissues. Results demonstrated that AluYRa1 was only integrated into the genome of Macaca species and this lineage-specific integration led to exonization events by producing a conserved 3' splice site. Six transcript variants (V1-V6) were generated by alternative splicing (AS) events, including intron retention and alternative 5' splice sites in the 5' and 3' flanking regions of CTSF_AluYRa1. Among them, V3-V5 transcripts were ubiquitously expressed in all tissues of rhesus monkey and crab-eating monkey, whereas AluYRa1-exonized V1 was dominantly expressed in the testis of the crab-eating monkey, and V2 was only expressed in the testis of the two monkeys. These five transcript variants also had different amino acid sequences in the C-terminal region of CTSF, as compared to reference sequences. Thus, species-specific Alu-derived exonization by lineage-specific integration of Alu elements and AS events seems to have played an important role during primate evolution by producing transcript variants and gene diversification.


Subject(s)
Alu Elements , Cathepsin F/genetics , Macaca fascicularis/genetics , Macaca mulatta/genetics , Alternative Splicing , Animals , Biological Evolution , Humans , Male
8.
Int J Genomics ; 2016: 1679574, 2016.
Article in English | MEDLINE | ID: mdl-28083540

ABSTRACT

TSEN54 encodes a subunit of the tRNA-splicing endonuclease complex, which catalyzes the identification and cleavage of introns from precursor tRNAs. Previously, we identified an AluSx-derived alternative transcript in TSEN54 of cynomolgus monkey. Reverse transcription-polymerase chain reaction (RT-PCR) amplification and TSEN54 sequence analysis of primate and human samples identified five novel alternative transcripts, including the AluSx exonized transcript. Additionally, we performed comparative expression analysis via RT-qPCR in various cynomolgus, rhesus monkey, and human tissues. RT-qPCR amplification revealed differential expression patterns. Furthermore, genomic PCR amplification and sequencing of primate and human DNA samples revealed that AluSx elements were integrated in human and all of the primate samples tested. Intriguingly, in langur genomic DNA, an additional AluY element was inserted into AluSx of intron eight of TSEN54. The new AluY element showed polymorphic insertion. Using standardized nomenclature for Alu repeats, the polymorphic AluY of the langur TSEN54 was designated as being of the AluYl17 subfamily. Our results suggest that integration of the AluSx element in TSEN54 contributed to diversity in transcripts and induced lineage- or species-specific evolutionary events such as alternative splicing and polymorphic insertion during primate evolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...