Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 13(2)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38397793

ABSTRACT

Photoaging refers to the accumulation of skin damage which includes wrinkle formation, loss of elasticity, and epidermal thickening due to repeated ultraviolet (UV) irradiation. The present study investigated the protective effects of Elaeagnus umbellata fruit extract (Elaea) on UV-mediated photoaged skin of SKH1 hairless mice and compared the effects of Elaea with ascorbic acid. Although there was no difference in body weight between groups during experimental period, oral administration of 50-200 mg/kg Elaea once daily for 15 weeks significantly prevented an increase in skin weight, epithelial thickening of epidermis, and apoptosis caused by UV irradiation. Skin replica and histopathological analyses revealed that Elaea dose-dependently decreased wrinkle and microfold formation. In addition, Elaea administration restored UV-mediated reduction in type I collagen and hyaluronan through the inhibition of matrix metalloproteinases and p38 mitogen-activated protein kinase expression. Moreover, Elaea suppressed UV-dependent increases in superoxide anion production, fatty acid oxidation, and protein nitration by up-regulating antioxidant system. Furthermore, Elaea alleviated infiltration of inflammatory cells in UV-irradiated skin. The preventive effects of 100 mg/kg Elaea administration against UV-induced photoaging were similar to those by 100 mg/kg ascorbic acid. Collectively, the present study suggests that the E. umbellata fruit is a promising edible candidate to prevent skin photoaging.

2.
Antioxidants (Basel) ; 12(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37107297

ABSTRACT

Adenophora stricta Miq. (Campanulaceae family) is a traditional herb used for relieving cough and phlegm in East Asia. This study explored the effects of A. stricta root extract (AsE) in ovalbumin (OVA)-induced allergic asthma and lipopolysaccharide (LPS)-stimulated macrophages. Administration of 100-400 mg/kg AsE dose-dependently decreased pulmonary congestion and suppressed the reduction of alveolar surface area in mice with OVA-mediated allergic asthma. Histopathological analysis of lung tissue and cytological analysis of bronchioalveolar lavage fluid showed that AsE administration significantly attenuated inflammatory cell infiltration into the lungs. In addition, AsE also alleviated OVA-specific immunoglobulin E, interleukin (IL)-4, and IL-5 production, which are essential for OVA-dependent activation of T helper 2 lymphocytes. In Raw264.7 macrophage cells, AsE significantly blocked nitric oxide, tumor necrosis factor-α, IL-1ß, IL-6, and monocyte chemoattractant factor-1 production in response to LPS. Results from an immunoblot assay revealed that AsE inhibited the phosphorylation of c-jun N-terminal kinase, inhibitory-κB kinase α/ß, and p65 in LPS-stimulated cells. Furthermore, 2-furoic acid, 5-hydroxymethylfurfural, and vanillic acid 4-ß-D-glucopyranoside in AsE were shown to inhibit the production of proinflammatory mediators by LPS. Taken together, the present results suggest that A. stricta root will be a useful herb for relieving allergic asthma through managing airway inflammation.

3.
Article in English | MEDLINE | ID: mdl-36317105

ABSTRACT

Objectives: A powerful analgesic called Morphine causes addiction behaviors and immune suppression as a potential oxidative stressor. Acupuncture showed to inhibit oxidative stress-induced hepatic damage, regulate reactive oxygen species, and attenuate morphine addiction behaviors. Therefore, we investigated the potential effects of acupuncture on morphine-induced immune suppression. Materials and Methods: Rats received morphine intravenously through implanted catheters for 3, 7, or 21 days to determine the optimal condition for morphine-induced immune suppression. Second, we examined whether intravenous (iv.) or intraperitoneal (ip.) administration produced different results. Third, the effects of acupuncture in rats who received morphine for 21 days were investigated. Spleen and submandibular lymph node (S-LN) weights and natural killer (NK) cell activity were measured, and the white pulp diameter, total and cortical spleen thicknesses, and the number of lymphoid follicles in S-LNs were examined. The number of immunoreactive cells was also measured. Results: Decreased organ weights and increased atrophic changes were observed as morphine-induced immune suppression. However, dose-dependent increased immune suppression was not observed between 5.0 mg/kg and 10.0 mg/kg of morphine. And, 3-day withdrawal did not affect. Similar histopathological findings were observed in 5.0 and 10.0 ip. rats when compared to equal dosages of iv., respectively. The morphine induced-immune suppression evidenced by spleen and left S-LN weights, splenic NK cell activities, histopathological findings, and the immunoreactive cell number were normalized by acupuncture. Conclusion: These results indicate that acupuncture inhibits morphine-induced immune suppression, maybe via antioxidative action.

4.
Free Radic Biol Med ; 193(Pt 2): 620-637, 2022 11 20.
Article in English | MEDLINE | ID: mdl-36370962

ABSTRACT

Ferroptosis is a widely known regulator of cell death in connection with the redox state as a consequence of the depletion of glutathione or accumulation of lipid peroxidation. Hepatic stellate cells (HSCs) play a pivotal role in the progression of hepatic fibrosis by increasing the production and secretion of the extracellular matrix. However, the role of ferroptosis in HSC activation and liver fibrogenesis has not been clearly elucidated. The ferroptosis inducer RAS-selective lethal 3 (RSL3) or erastin treatment in HSCs caused cell death. This effect was suppressed only after exposure to ferroptosis inhibitors. We observed induction of ferroptosis by RSL3 treatment in HSCs supported by decreased glutathione peroxidase 4, glutathione deficiency, reactive oxygen species generation, or lipid peroxidation. Interestingly, RSL3 treatment upregulated the expression of plasminogen activator inhibitor-1, a representative fibrogenic marker of HSCs. In addition, treatment with ferroptosis-inducing compounds increased c-JUN phosphorylation and activator protein 1 luciferase activity but did not alter Smad phosphorylation and Smad-binding element luciferase activity. Chronic administration of iron dextran to mice causes ferroptosis of liver in vivo. The expression of fibrosis markers, such as alpha-smooth muscle actin and plasminogen activator inhibitor-1, was increased in the livers of mice with iron accumulation. Hepatic injury accompanying liver fibrosis was observed based on the levels of alanine aminotransferase, aspartate aminotransferase, and hematoxylin and eosin staining. Furthermore, we found that both isolated primary hepatocyte and HSCs undergo ferroptosis. Consistently, cirrhotic liver tissue of patients indicated glutathione peroxidase 4 downregulation in fibrotic region. In conclusion, our results suggest that ferroptosis contribute to HSC activation and the progression of hepatic fibrosis.


Subject(s)
Ferroptosis , Hepatic Stellate Cells , Mice , Animals , Ferroptosis/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Liver/metabolism , Liver Cirrhosis/metabolism , Glutathione/metabolism , Iron/metabolism , Luciferases/metabolism
5.
Antioxidants (Basel) ; 11(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35883867

ABSTRACT

Chronic exposure of particulate matter of less than 2.5 µm (PM2.5) has been considered as one of the major etiologies for various respiratory diseases. Adenophora stricta Miq. is a medicinal herb that has been used for treating respiratory diseases in East Asia. The present study investigated the effect of A. stricta root extract (AsE) on PM2.5-induced lung injury in mice. Oral administration of 100-400 mg/kg AsE for 10 days significantly reduced the PM2.5-mediated increase in relative lung weight, but there was no difference in body weight with AsE administration. In addition, AsE dose-dependently decreased congested region of the lung tissue, prevented apoptosis and matrix degradation, and alleviated mucus stasis induced by PM2.5. Moreover, cytological analysis of bronchioalveolar lavage fluid revealed that AsE significantly inhibited the infiltration of immune cells into the lungs. Consistently, AsE also decreased expression of proinflammatory cytokines and chemokines in lung tissue. Furthermore, AsE administration blocked reactive oxygen species production and lipid peroxidation through attenuating the PM2.5-dependent reduction of antioxidant defense system in the lungs. Therefore, A. stricta root would be a promising candidate for protecting lung tissue from air pollution such as PM2.5.

6.
Antioxidants (Basel) ; 11(4)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35453415

ABSTRACT

We recently reported that varying combination ratios of lemon balm (Mellissa officinalis L.) and corn silk extracts (Stigma of Zea mays L. fruit) could reduce the obesity caused by a high-fat diet (HFD). The present study investigated the dose-dependent effect of a 1:1 (w:w) mixture of lemon balm and corn silk extracts (M-LB/CS) on HFD-mediated metabolic disorders and compared the effect with metformin. Oral administration of 50-200 mg/kg of M-LB/CS for 84 days significantly inhibited HFD-induced body weight gain, adipocyte hypertrophy, and lipogenic gene induction without affecting food consumption in mice. Biochemical analyses showed that M-LB/CS blocked abnormal lipid accumulation in the blood by escalating fecal lipid excretion. In addition, M-LB/CS prevented HFD-mediated pancreatic atrophy, decreased the number of insulin- and glucagon-immunoreactive cells, and inhibited increases in glycated hemoglobin, glucose, and insulin. Moreover, M-LB/CS also reduced hepatic injury, lipid accumulation, gluconeogenesis, and lipid peroxidation in parallel with the induction of AMP-activated protein kinase and antioxidant enzymes. Furthermore, M-LB/CS protected the kidney by inhibiting tubular vacuolation and reducing serum creatinine and blood urea nitrogen levels. The prophylactic effect of 100 mg/kg M-LB/CS-administration was comparable to that of metformin. Therefore, M-LB/CS may be an alternative option for managing obesity and its related metabolic disorders.

7.
Antioxidants (Basel) ; 10(12)2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34943118

ABSTRACT

Lemon balm and corn silk are valuable medicinal herbs, which exhibit variety of beneficial effects for human health. The present study explored the anti-obesity effects of a mixture of lemon balm and corn silk extracts (M-LB/CS) by comparison with the effects of single herbal extracts in high-fat diet (HFD)-induced obesity in mice. HFD supplementation for 84 days increased the body weight, the fat mass density, the mean diameter of adipocytes, and the thickness of fat pads. However, oral administration of M-LB/CS significantly alleviated the HFD-mediated weight gain and adipocyte hypertrophy without affecting food consumption. Of the various combination ratios of M-LB/CS tested, the magnitude of the decreases in weight gain and adipocyte hypertrophy by administration of 1:1, 1:2, 2:1, and 4:1 (w/w) M-LB/CS was more potent than that by single herbal extracts alone. In addition, M-LB/CS reduced the HFD-mediated increases in serum cholesterol, triglyceride, and low-density lipoprotein, prevented the reduction in serum high-density lipoprotein, and facilitated fecal excretion of cholesterol and triglyceride. Moreover, M-LB/CS mitigated the abnormal changes in specific mRNAs associated with lipogenesis and lipolysis in the adipose tissue. Furthermore, M-LB/CS reduced lipid peroxidation by inhibiting the HFD-mediated reduction in glutathione, catalase, and superoxide dismutase. Therefore, M-LB/CS is a promising herbal mixture for preventing obesity.

8.
Free Radic Biol Med ; 176: 246-256, 2021 11 20.
Article in English | MEDLINE | ID: mdl-34614448

ABSTRACT

Liver fibrosis is caused by repetitive hepatic injury. Regulated in development and DNA damage response 1 (REDD1) gene is induced by various stresses and has been studied in cell proliferation and survival. However, the role of REDD1 in hepatic stellate cell activation and hepatic fibrogenesis has not yet been investigated. In the current study, we examined the effect of REDD1 on hepatic fibrogenesis and the underlying molecular mechanism. REDD1 protein was upregulated in the activated primary hepatic stellate cells and transforming growth factor-ß (TGF-ß)-treated LX-2 cells. REDD1 mRNA levels were also elevated by TGF-ß treatment. TGF-ß signaling is primarily transduced via the activation of the Smad transcription factor. However, TGF-ß-mediated REDD1 induction was not Smad-dependent. Thus, we investigated the transcription factors that influence the REDD1 expression by TGF-ß. We found that c-JUN, a component of AP-1, upregulated the REDD1 expression that was specifically suppressed by p38 inhibitor. In silico analysis of the REDD1 promoter region showed putative AP-1-binding sites; additionally, its deletion mutants demonstrated that the AP-1-binding site between -716 and -587 bp within the REDD1 promoter is critical for TGF-ß-mediated REDD1 induction. Moreover, REDD1 overexpression markedly inhibited TGF-ß-induced plasminogen activator inhibitor-1 (PAI-1) expression and Smad phosphorylation. REDD1 adenovirus infection inhibited CCl4-induced hepatic injury in mice, which was demonstrated by reduced ALT/AST levels and collagen accumulation. In addition, we observed that REDD1 inhibited CCl4-induced fibrogenic gene induction and restored GSH and malondialdehyde levels. Our findings implied that REDD1 has the potential to inhibit HSC activation and protect against liver fibrosis.


Subject(s)
Hepatic Stellate Cells , Smad Proteins , Transcription Factors , Animals , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Mice , Signal Transduction , Smad Proteins/genetics , Smad Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism
9.
Antioxidants (Basel) ; 10(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34679678

ABSTRACT

Ferroptosis is a type of programmed necrosis triggered by iron-dependent lipid peroxidation. We investigated the role of B-cell translocation gene 1 (BTG1) in cystine and methionine deficiency (CST/Met (-))-mediated cell death. CST/Met (-) depleted reduced and oxidized glutathione in hepatocyte-derived cells, increased prostaglandin-endoperoxide synthase 2 expression, and promoted reactive oxygen species accumulation and lipid peroxidation, as well as necrotic cell death. CST/Met (-)-mediated cell death and lipid peroxidation was specifically inhibited by pretreatment with ferroptosis inhibitors. In parallel with cell death, CST/Met (-) blocked global protein translation and increased the expression of genes associated with the integrated stress response. Moreover, CST/Met (-) significantly induced BTG1 expression. Using a BTG1 promoter-harboring reporter gene and siRNA, activating transcription factor 4 (ATF4) was identified as an essential transcription factor for CST/Met (-)-mediated BTG1 induction. Although knockout of BTG1 in human HAP1 cells did not affect the accumulation of reactive oxygen species induced by CST/Met (-), BTG1 knockout significantly decreased the induction of genes associated with the integrated stress response, and reduced lipid peroxidation and cell death in response to CST/Met (-). The results demonstrate that CST/Met (-) induces ferroptosis by activating ATF4-dependent BTG1 induction.

10.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33947048

ABSTRACT

Hemistepta lyrata (Bunge) Bunge is a biennial medicinal plant possessing beneficial effects including anti-inflammation, and hemistepsin A (HsA) isolated from H. lyrata has been known as a hepatoprotective sesquiterpene lactone. In this report, we explored the cytotoxic effects of H. lyrata on hepatocellular carcinoma (HCC) cells and investigated the associated bioactive compounds and their relevant mechanisms. From the viability results of HCC cells treated with various H. lyrata extracts, HsA was identified as the major compound contributing to the H. lyrata-mediated cytotoxicity. HsA increased expression of cleaved PARP and cells with Sub-G1 phase, Annexin V binding, and TUNEL staining, which imply HsA induces apoptosis. In addition, HsA provoked oxidative stress by decreasing the reduced glutathione/oxidized glutathione ratio and accumulating reactive oxygen species and glutathione-protein adducts. Moreover, HsA inhibited the transactivation of signal transducer and activator of transcription 3 (STAT3) by its dephosphorylation at Y705 and glutathione conjugation. Stable expression of a constitutive active mutant of STAT3 prevented the reduction of cell viability by HsA. Finally, HsA enhanced the sensitivity of sorafenib-mediated cytotoxicity by exaggerating oxidative stress and Y705 dephosphorylation of STAT3. Therefore, HsA will be a promising candidate to induce apoptosis of HCC cells via downregulating STAT3 and sensitizing conventional chemotherapeutic agents.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation, Neoplastic/drug effects , Lactones/pharmacology , Liver Neoplasms/pathology , Neoplasm Proteins/biosynthesis , STAT3 Transcription Factor/biosynthesis , Sesquiterpenes/pharmacology , Transcriptional Activation/drug effects , Cell Line, Tumor , Down-Regulation/drug effects , Drug Screening Assays, Antitumor , Genes, Reporter , Humans , Neoplasm Proteins/genetics , Oxidative Stress , Protein Kinase Inhibitors/pharmacology , Recombinant Proteins/metabolism , STAT3 Transcription Factor/genetics , Sorafenib/pharmacology
11.
BMB Rep ; 54(2): 106-111, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32843130

ABSTRACT

Hemistepsin A (HsA) is a guaianolide sesquiterpene lactone that inhibits hepatitis and liver fibrosis. We evaluated the effects of HsA on liver X receptor (LXR)-mediated hepatic lipogenesis in vitro and in vivo. Up to 10 µM, HsA did not affect the viability of HepG2 and Huh7 cells. Pretreatment with 5-10 µM HsA significantly decreased the luciferase activity of the LXR response element, which was transactivated by T0901317, GW 3965, and LXRα/retinoid X receptor α overexpression. In addition, it significantly inhibited the mRNA expression of LXRα in HepG2 and Huh7 cells. It also suppressed the expression of sterol regulatory element-binding protein-1c and lipogenic genes and reduced the triglyceride accumulation triggered by T0901317. Intraperitoneal injection of HsA (5 and 10 mg/kg) in mice significantly alleviated the T0901317-mediated increases in hepatocyte diameter and the percentage of regions in hepatic parenchyma occupied by lipid droplets. Furthermore, HsA significantly attenuated hepatic triglyceride accumulation by restoring the impaired expression of LXRα-dependent lipogenic genes caused by T0901317. Therefore, based on its inhibition of the LXRα-dependent signaling pathway, HsA has prophylactic potential for steatosis. [BMB Reports 2021; 54(2): 106-111].


Subject(s)
Hydrocarbons, Fluorinated/antagonists & inhibitors , Lactones/pharmacology , Lipogenesis/drug effects , Liver/drug effects , Sesquiterpenes/pharmacology , Sulfonamides/antagonists & inhibitors , Cells, Cultured , Humans , Hydrocarbons, Fluorinated/pharmacology , Liver/metabolism , Liver X Receptors/antagonists & inhibitors , Liver X Receptors/genetics , Liver X Receptors/metabolism , Sulfonamides/pharmacology
12.
Article in English | MEDLINE | ID: mdl-32695211

ABSTRACT

Pericarpium zanthoxyli has been extensively used in traditional Oriental medicine to treat gastric disorders and has anti-inflammatory and antioxidative activities. Therefore, the present study examined a possible hepatoprotective effect of a P. zanthoxyli extract (PZE) and investigated the underlying molecular mechanisms. We employed an in vitro model of arachidonic acid (AA) + iron-induced hepatocyte damage and an in vivo model of CCl4-induced liver injury to assess the effects of PZE and evaluated the relevant molecular targets using biochemical assays, flow cytometry analysis, Western blot, and histopathological analysis. The PZE inhibited AA + iron-induced hepatotoxicity in HepG2 cells, improved mitochondrial dysfunction, and reversed an increase in the cellular H2O2 production and a decrease in the reduced GSH levels induced by AA + iron. Treatment with either 30 or 100 µg/ml PZE significantly increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) protein, and the latter dose also increased the antioxidant response element- (ARE-) driven luciferase activity and enhanced the protein expressions of glutamate-cysteine ligase catalytic subunit and NAD(P)H:quinone oxidoreductase 1. In addition, treatment with 100 µg/ml PZE for 3 or 6 h increased the phosphorylation rates of Nrf2 and the extracellular signal-regulated kinase. In the in vivo experiment, oral treatment with both 100 and 300 mg/kg PZE inhibited the plasma aspartate aminotransferase activity, and the latter also inhibited the plasma alanine aminotransferase activity. In addition, both doses of PZE ameliorated the parenchymal degeneration and necrosis in the liver induced by CCl4 administration, which was associated with reduced expressions of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase, nitrotyrosine, and 4-hydroxynonenal by PZE. These findings suggest that PZE has protective effects against hepatotoxicity both in vitro and in vivo, which are mainly mediated via its antioxidant activity.

13.
J Food Biochem ; 44(8): e13232, 2020 08.
Article in English | MEDLINE | ID: mdl-32497278

ABSTRACT

We investigated the effect of a 2:1 (w/w) mixture of lemon balm and dandelion extracts (LD) on ethanol (EtOH)-mediated liver injury and explored the underlying mechanisms. Administration of LD synergistically reduced relative liver weight and decreased the levels of serum biomarkers of hepatic injury. Histopathological and biochemical analyses indicated that LD synergistically attenuated hepatic accumulation of triacylglycerides (TGs) and restored the levels of mRNAs related to fatty acid metabolism. In addition, LD significantly reduced EtOH-induced hepatic oxidative stress by attenuating the reduction in levels of nuclear factor E2-related factor 2 (Nrf2) mRNA and enhancing antioxidant activity. Moreover, LD decreased the EtOH-mediated increase in levels of hepatic tumor necrosis factor-α (TNF-α) mRNA. In vitro, LD significantly scavenged free radicals, increased cell viability against tert-butylhydroperoxide (tBHP), and transactivated Nrf2 target genes in HepG2 cells. Furthermore, LD decreased levels of pro-inflammatory mediators in lipopolysaccharide-stimulated Raw264.7 cells. Therefore, LD shows promise for preventing EtOH-mediated liver injury. PRACTICAL APPLICATIONS: There were no approved therapeutic agents for preventing and/or treating alcoholic liver diseases. In this study, a 2:1 (w/w) mixture of lemon balm and dandelion leaf extract (DL) synergistically ameliorated EtOH-induced hepatic injury by inhibiting lipid accumulation, oxidative stress, and inflammation. Our findings will enable the development of a novel food supplement for the prevention or treatment of alcohol-mediated liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury , Melissa , Taraxacum , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Ethanol/toxicity , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
14.
Toxicol Appl Pharmacol ; 399: 115036, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32407927

ABSTRACT

Endoplasmic reticulum (ER) stress designates a cellular response to the accumulation of misfolded proteins, which is related to disease progression in the liver. Luteolin (3',4',5,7-tetrahydroxyflavone) is a phytochemical found frequently in medicinal herbs. Although luteolin has been reported to possess the therapeutic potential to prevent diverse stage of liver diseases, its role in hepatic ER stress has not been established. Thus, the present study aimed to determine the role of luteolin in tunicamycin (Tm)-induced ER stress, and to identify the relevant mechanisms involved in its hepatoprotective effects. In hepatocyte-derived cells and primary hepatocytes, luteolin significantly decreased Tm- or thapsigargin-mediated C/EBP homologous protein (CHOP) expression. In addition, luteolin reduced the activation of three canonical signaling pathways related to the unfolded protein response, and decreased mRNA levels of glucose-regulated protein 78, ER DNA J domain-containing protein 4, and asparagine synthetase. Luteolin also significantly upregulated sestrin 2 (SESN2), and luteolin-mediated CHOP inhibition was blocked in SESN2 (+/-) cells. Moreover, luteolin resulted in phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), as well as increased nuclear Nrf2 expression. Deletion of the antioxidant response element in the human SESN2 promoter inhibited increased luciferase activation by luteolin, suggesting that Nrf2 is a critical transcription factor for luteolin-dependent SESN2 expression. In a Tm-mediated liver injury model, luteolin decreased serum alanine aminotransferase and aspartate aminotransferase activities, prevented degenerative changes and apoptosis of hepatocytes, and inhibited CHOP and glucose-regulated protein 78 expression in hepatic tissues. Therefore, luteolin may be an effective phytochemical to manage ER stress-related liver injury.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Liver/drug effects , Luteolin/pharmacology , NF-E2-Related Factor 2/metabolism , Nuclear Proteins/metabolism , Tunicamycin/pharmacology , Animals , Antioxidant Response Elements/drug effects , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , HEK293 Cells , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/metabolism , Male , Mice , Mice, Inbred ICR , Phosphorylation/drug effects , Transcription Factor CHOP/metabolism , Unfolded Protein Response/drug effects
15.
Cancer Chemother Pharmacol ; 85(4): 685-697, 2020 04.
Article in English | MEDLINE | ID: mdl-32157413

ABSTRACT

PURPOSE: CKD-516 (Valecobulin), a vascular-disrupting agent, inhibits microtubule elongation. We evaluated the effect of CKD-516 on lung cancer cells and the underlying molecular mechanisms. METHODS: The effects of S516, an active metabolite of CKD-516, were evaluated in HUVECs and three lung cancer cell lines and by a microtubule polymerization assay. Tubulin cross-linking was used to identify the binding site of S516 on tubulin, and Western blotting was performed to identify the intracellular pathways leading to cell death. Subcutaneous lung cancer xenograft models were used to assess the in vivo effect of CKD-516 on tumor growth. RESULTS: S516 targeted the colchicine binding site on ß-tubulin. In lung cancer cells, S516 increased endoplasmic reticulum (ER) stress and induced reactive oxygen species (ROS) generation by mitochondria and the ER. In addition, CKD-516 monotherapy strongly inhibited the growth of lung cancer xenograft tumors and exerted a synergistic effect with carboplatin. CONCLUSION: The findings suggest that CKD-516 exerts an anticancer effect in company with inducing ER stress and ROS production via microtubule disruption in lung cancer cells. CKD-516 may thus have therapeutic potential for lung cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Benzophenones/pharmacology , Endoplasmic Reticulum Stress/drug effects , Lung Neoplasms/drug therapy , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Valine/analogs & derivatives , Animals , Apoptosis , Cell Proliferation , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Membrane Potential, Mitochondrial , Mice , Mice, Inbred BALB C , Mice, Nude , Mitochondria/pathology , Tumor Cells, Cultured , Valine/pharmacology , Xenograft Model Antitumor Assays
16.
Article in English | MEDLINE | ID: mdl-32190091

ABSTRACT

Pelargonium sidoides (PS) is traditionally used to treat respiratory and gastrointestinal infections, dysmenorrhea, and hepatic disorders in South Africa. Coptis Rhizoma (CR) is used to treat gastroenteric disorders, cardiovascular diseases, and cancer in East Asia. In the present study, we intended to observe the possible beneficial antiasthma effects of PS and CR on the ovalbumin- (OVA-) induced asthma C57BL/6J mice. Asthma in mice was induced by OVA sensitization and subsequent boosting. PS + CR (300 and 1,000 mg/kg; PO) or dexamethasone (IP) was administered once a day for 16 days. The changes in the body weight and gains, lung weights and gross inspections, total and differential cell counts of leukocytes in bronchoalveolar lavage fluid (BALF), serum OVA-specific immunoglobulin E (OVA-sIgE) levels, interleukin-4 (IL-4) and IL-5 levels in BALF and lung tissue homogenate, and IL-4 and IL-5 mRNA levels in lung tissue homogenates were analyzed with lung histopathology: mean alveolar surface area (ASA), alveolar septal thickness, numbers of inflammatory cells, mast cells, and eosinophils infiltrated in the alveolar regions, respectively. Significant increases in lung weights, total and differential cell counts of leukocytes in BALF, serum OVA-sIgE levels, and IL-4 and IL-5 levels in BALF and lung tissue homogenate were observed in OVA control as compared to those of intact control. In addition, OVA control showed a significant decrease in mean ASA and increases in alveolar septal thickness, numbers of inflammatory cells, mast cells, and eosinophils infiltrated in alveolar regions. However, these allergic and inflammatory asthmatic changes were significantly inhibited by PS + CR in a dose-dependent manner. In this study, PS + CR showed dose-dependent beneficial effects on OVA-induced asthma in mice through anti-inflammatory and antiallergic activities. Therefore, it is expected that PS + CR have enough potential as a new therapeutic agent or as an ingredient of a medicinal agent for various allergic and inflammatory respiratory diseases including asthma.

17.
Biol Pharm Bull ; 43(4): 619-628, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32009027

ABSTRACT

Neoagarooligosaccharides (NAOS) are generated by ß-agarases, which cleave the ß-1,4 linkage in agarose. Previously, we reported that NAOS inhibited fat accumulation in the liver and decreased serum cholesterol levels. However, the hepatoprotective effect of NAOS on acute liver injury has not yet been investigated. Thus, we examined whether NAOS could activate nuclear factor (NF)-E2-related factor 2 (Nrf2)-antioxidant response element (ARE) and upregulates its target gene, and has hepatoprotective effect in vivo. In hepatocytes, phosphorylation and subsequent nuclear translocation of Nrf2 are increased by treatment with NAOS, in a manner dependent on p38 and c-Jun N-terminal kinase (JNK). Consistently, NAOS augmented ARE reporter gene activity and the antioxidant protein levels, resulting in increased intracellular glutathione levels. NAOS antagonized tert-butylhydroperoxide-induced reactive oxygen species (ROS) generation. Moreover, NAOS inhibited acetaminophen (APAP)-induced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and significantly decreased hepatocyte degeneration and inflammatory cell infiltration. Moreover, ROS production and glutathione depletion by APAP were reversed by NAOS. APAP-mediated apoptotic signaling pathways were also inhibited in NAOS-treated mice. Upregulalted hepatic expression of genes related to inflammation by APAP were consistently diminished by NAOS. Collectively, our results demonstrate that NAOS exhibited a hepatoprotective effect against APAP-mediated acute liver damage through its antioxidant capacity.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , NF-E2-Related Factor 2/metabolism , Oligosaccharides/therapeutic use , Protective Agents/therapeutic use , Acetaminophen , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/metabolism , Glutathione/metabolism , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Male , Mice, Inbred ICR , Oligosaccharides/pharmacology , Protective Agents/pharmacology , Reactive Oxygen Species/metabolism
18.
Food Chem Toxicol ; 135: 111044, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31830547

ABSTRACT

Hemistepsin A (HsA), isolated from Hemistepta lyrata (Bunge) Bunge, has the ability to ameliorate hepatitis in mice. However, the effects of H. lyrata and HsA on other types of liver disease have not been explored. In this report, we investigated the effects of H. lyrata and HsA on liver fibrosis and the underlying molecular mechanisms in activated hepatic stellate cells (HSCs). Based on cell viability-guided isolation, we found HsA was the major natural product responsible for H. lyrata-mediated cytotoxicity in LX-2 cells. HsA significantly decreased the viability of LX-2 cells and primary activated HSCs, increased the binding of Annexin V, and altered the expression of apoptosis-related proteins, suggesting that HsA induces apoptosis in activated HSCs. HsA reduced the phosphorylation of IKKε and the transactivation of nuclear factor-κB (NF-κB). Moreover, HsA decreased the phosphorylation of Akt and its downstream signaling molecules. Transfection experiments suggested that inhibition of NF-κB or Akt is essential for HsA-induced apoptosis of HSCs. In a CCl4-induced liver fibrosis model, HsA administration significantly decreased ALT and AST activities. Furthermore, HsA attenuated CCl4-mediated collagen deposits and profibrogenic genes expression in hepatic tissue. Thus, HsA may serve as a natural product for managing liver fibrosis through inhibition of NF-κB/Akt-dependent signaling.


Subject(s)
Apoptosis/drug effects , Hepatic Stellate Cells/drug effects , Lactones/pharmacology , Liver Cirrhosis/prevention & control , Sesquiterpenes/pharmacology , Animals , Cell Line, Transformed , Chloroform/pharmacology , Hepatic Stellate Cells/metabolism , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mice , NF-kappa B/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
19.
Exp Ther Med ; 18(6): 4388-4396, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31772634

ABSTRACT

Ginseng berry exhibits a diverse range of pharmacological activities. The present study aimed to examine the neuroprotective effects of ginseng berry aqueous extract (GBE) against oxidative stress and to assess the impact of GBE on memory impairment in mice. In HT-22 cells, GBE pretreatment significantly inhibited glutamate- and hydrogen peroxide-mediated cytotoxicity in a concentration-dependent manner, while treatment with up to 100 µg/ml GBE alone did not change cell viability. In a murine model of scopolamine (SCP)-induced memory impairment, results from the passive avoidance test and the Morris water maze test indicated that GBE administration for 4 weeks prolonged step-through latency time and shortened escape latency time, suggesting that GBE can attenuate deficits in long-term memory induced by SCP. Additionally, GBE prevented SCP-induced reductions in acetylcholine by decreasing acetylcholinesterase activity and upregulating choline acetyltransferase mRNA levels in the hippocampus. GBE mitigated SCP-mediated mRNA decreases in brain-derived neurotrophic factor levels and its associated signaling molecules. Furthermore, GBE administration significantly suppressed malondialdehyde production and increased glutathione levels, catalase activity and superoxide dismutase activity in SCP-induced memory impaired mice. Therefore, the results of the current study indicated that ginseng berry may be a potential candidate for treating or preventing memory deficits that are associated with neurodegenerative disorders.

20.
Sci Transl Med ; 11(513)2019 10 09.
Article in English | MEDLINE | ID: mdl-31597753

ABSTRACT

The impact of liver disease on whole-body glucose homeostasis is largely attributed to dysregulated release of secretory proteins in response to metabolic stress. The molecular cues linking liver to whole-body glucose metabolism remain elusive. We found that expression of G protein α-13 (Gα13) was decreased in the liver of mice and humans with diabetes. Liver-specific deletion of the Gna13 gene in mice resulted in systemic glucose intolerance. Comparative secretome analysis identified inter-α-trypsin inhibitor heavy chain 1 (ITIH1) as a protein secreted by liver that was responsible for systemic insulin resistance in Gna13-deficient mice. Liver expression of ITIH1 positively correlated with surrogate markers for diabetes in patients with impaired glucose tolerance or overt diabetes. Mechanistically, a decrease in hepatic Gα13 caused ITIH1 oversecretion by liver through induction of O-GlcNAc transferase expression, facilitating ITIH1 deposition on the hyaluronan surrounding mouse adipose tissue and skeletal muscle. Neutralization of secreted ITIH1 ameliorated glucose intolerance in obese mice. Our findings demonstrate systemic insulin resistance in mice resulting from liver-secreted ITIH1 downstream of Gα13 and its reversal by ITIH1 neutralization.


Subject(s)
Alpha-Globulins/metabolism , Insulin Resistance/physiology , Liver/metabolism , Alpha-Globulins/genetics , Animals , Antibodies, Neutralizing/metabolism , Cell Line , Cells, Cultured , Chromatography, Liquid , Glucose Intolerance/metabolism , Glucose Tolerance Test , HEK293 Cells , Hepatocytes/metabolism , Humans , Insulin Resistance/genetics , Male , Mice , Mice, Inbred C57BL , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...