Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Med Genet ; 19(1): 124, 2018 07 23.
Article in English | MEDLINE | ID: mdl-30037327

ABSTRACT

BACKGROUND: Individuals with an extremely rare inherited condition, termed Congenital Insensitivity to Pain (CIP), do not feel pain in response to noxious stimuli. Variants in SCN9A, encoding the transmembrane voltage-gated sodium channel Nav1.7, have previously been reported in subjects with CIP accompanied by anosmia, which are typically transmitted in a recessive pattern. Functional characterisations of some of these SCN9A mutations show that they result in complete loss-of-function of Nav1.7. METHODS: In a consanguineous family we performed whole exome sequencing of three members who have a diagnosis of CIP and one unaffected family member. The functional effects of the segregating variant in SCN9A were determined using patch clamp electrophysiology in human embryonic kidney (HEK) 293 cells transfected with the variant. RESULTS: We found that each CIP subject was homozygous for a putatively nonsense variant, R1488*, in SCN9A. This variant was reported elsewhere in a subject with CIP, though the functional effect was not determined. Using electrophysiology, we confirm that this variant results in a complete loss-of-function of Nav1.7. CONCLUSIONS: We confirm through electrophysiological analysis that this R1488* variant in SCN9A results in complete loss-of-function of Nav1.7, which is consistent with reports on other variants in this gene in subjects with CIP.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/genetics , Cell Line , Codon, Nonsense/genetics , Electrophysiological Phenomena/genetics , Female , HEK293 Cells , Humans , Male , Mutation/genetics , Pedigree , Exome Sequencing/methods
2.
Nucleic Acids Res ; 45(21): e174, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28981838

ABSTRACT

Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors.


Subject(s)
Alleles , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Gene Knockout Techniques/methods , Animals , Cell Line , Chromosomal Proteins, Non-Histone/genetics , Gene Expression , Genetic Vectors , Histone-Lysine N-Methyltransferase/genetics , Mice , Polycomb Repressive Complex 2/genetics
4.
Nat Genet ; 47(7): 803-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26005867

ABSTRACT

Pain perception has evolved as a warning mechanism to alert organisms to tissue damage and dangerous environments. In humans, however, undesirable, excessive or chronic pain is a common and major societal burden for which available medical treatments are currently suboptimal. New therapeutic options have recently been derived from studies of individuals with congenital insensitivity to pain (CIP). Here we identified 10 different homozygous mutations in PRDM12 (encoding PRDI-BF1 and RIZ homology domain-containing protein 12) in subjects with CIP from 11 families. Prdm proteins are a family of epigenetic regulators that control neural specification and neurogenesis. We determined that Prdm12 is expressed in nociceptors and their progenitors and participates in the development of sensory neurons in Xenopus embryos. Moreover, CIP-associated mutants abrogate the histone-modifying potential associated with wild-type Prdm12. Prdm12 emerges as a key factor in the orchestration of sensory neurogenesis and may hold promise as a target for new pain therapeutics.


Subject(s)
Carrier Proteins/genetics , Nerve Tissue Proteins/genetics , Pain Perception , Animals , COS Cells , Carrier Proteins/metabolism , Chlorocebus aethiops , Consanguinity , Female , Genetic Association Studies , Hereditary Sensory and Autonomic Neuropathies/genetics , Humans , Male , Mutation , Nerve Tissue Proteins/metabolism , Neurogenesis , Nociceptors/metabolism , Pain Insensitivity, Congenital/genetics , Pedigree , Polymorphism, Single Nucleotide , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL