Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Infect Dis Ther ; 12(6): 1605-1624, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37166567

ABSTRACT

INTRODUCTION: This randomized, double-blind, placebo-controlled, phase 2a trial was conducted to evaluate the safety and immunogenicity of the ID93 + glucopyranosyl lipid adjuvant (GLA)-stable emulsion (SE) vaccine in human immunodeficiency virus (HIV)-negative, previously Bacillus Calmette-Guérin (BCG)-vaccinated, and QuantiFERON-TB-negative healthy adults in South Korea. METHODS: Adults (n = 107) with no signs or symptoms of tuberculosis were randomly assigned to receive three intramuscular injections of 2 µg ID93 + 5 µg GLA-SE, 10 µg ID93 + 5 µg GLA-SE, or 0.9% normal saline placebo on days 0, 28, and 56. For safety assessment, data on solicited adverse events (AEs), unsolicited AEs, serious AEs (SAEs), and special interest AEs were collected. Antigen-specific antibody responses were measured using serum enzyme-linked immunosorbent assay. T-cell immune responses were measured using enzyme-linked immunospot and intracellular cytokine staining. RESULTS: No SAEs, deaths, or AEs leading to treatment discontinuation were found. The solicited local and systemic AEs observed were consistent with those previously reported. Compared with adults administered with the placebo, those administered with three intramuscular vaccine injections exhibited significantly higher antigen-specific antibody levels and Type 1 T-helper cellular immune responses. CONCLUSION: The ID93 + GLA-SE vaccine induced antigen-specific cellular and humoral immune responses, with an acceptable safety profile in previously healthy, BCG-vaccinated, Mycobacterium tuberculosis-uninfected adult healthcare workers. TRIAL REGISTRATION: This clinical trial was retrospectively registered on 16 January 2019 at Clinicaltrials.gov (NCT03806686).

2.
Lancet ; 400(10362): 1522-1530, 2022 10 29.
Article in English | MEDLINE | ID: mdl-36522208

ABSTRACT

BACKGROUND: With the introduction of new anti-tuberculosis drugs, all-oral regimens with shorter treatment durations for multidrug-resistant tuberculosis have been anticipated. We aimed to investigate whether a new all-oral regimen was non-inferior to the conventional regimen including second-line anti-tuberculosis drugs for 20-24 months in the treatment of fluoroquinolone-sensitive multidrug-resistant tuberculosis. METHODS: In this multicentre, randomised, open-label phase 2/3 non-inferiority trial, we enrolled men and women aged 19-85 years with multidrug-resistant tuberculosis confirmed by phenotypic or genotypic drug susceptibility tests or rifampicin-resistant tuberculosis by genotypic tests at 12 participating hospitals throughout South Korea. Participants with fluoroquinolone-resistant multidrug-resistant tuberculosis were excluded. Participants were randomly assigned (1:1) to two groups using a block randomisation, stratified by the presence of diabetes and cavitation on baseline chest radiographs. The investigational group received delamanid, linezolid, levofloxacin, and pyrazinamide for 9 months, and the control group received a conventional 20-24-month regimen, according to the 2014 WHO guidelines. The primary outcome was the treatment success rate at 24 months after treatment initiation in the modified intention-to-treat population and the per-protocol population. Participants who were "cured" and "treatment completed" were defined as treatment success following the 2014 WHO guidelines. Non-inferiority was confirmed if the lower limit of a 97·5% one-sided CI of the difference between the groups was greater than -10%. Safety data were collected for 24 months in participants who received a predefined regimen at least once. This study is registered with ClinicalTrials.gov, NCT02619994. FINDINGS: Between March 4, 2016, and Sept 14, 2019, 214 participants were enrolled, 168 (78·5%) of whom were included in the modified intention-to-treat population. At 24 months after treatment initiation, 60 (70·6%) of 85 participants in the control group had treatment success, as did 54 (75·0%) of 72 participants in the shorter-regimen group (between-group difference 4·4% [97·5% one-sided CI -9·5% to ∞]), satisfying the predefined non-inferiority margin. No difference in safety outcomes was identified between the control group and the shorter-regimen group. INTERPRETATION: 9-month treatment with oral delamanid, linezolid, levofloxacin, and pyrazinamide could represent a new treatment option for participants with fluoroquinolone-sensitive multidrug-resistant tuberculosis. FUNDING: Korea Disease Control and Prevention Agency, South Korea.


Subject(s)
Pyrazinamide , Tuberculosis, Multidrug-Resistant , Male , Female , Humans , Pyrazinamide/therapeutic use , Linezolid/therapeutic use , Levofloxacin/therapeutic use , Fluoroquinolones/therapeutic use , Drug Therapy, Combination , Tuberculosis, Multidrug-Resistant/drug therapy , Antitubercular Agents/therapeutic use , Treatment Outcome
3.
J Clin Tuberc Other Mycobact Dis ; 27: 100303, 2022 May.
Article in English | MEDLINE | ID: mdl-35243010

ABSTRACT

This study evaluated the diagnostic performance of the AccuPower® TB&MDR Real-Time PCR (TBMDR®) and AccuPower® XDR-TB Real-Time PCR Kit-A (XDRA®) to detect multidrug-resistant (MDR-TB) and pre-extensively drug-resistant tuberculosis (pre-XDR-TB) in comparison with phenotypic drug susceptibility testing (DST) using MGIT 960 on 234 clinical Mycobacterium tuberculosis isolates. Discrepant results were confirmed by direct-sequencing. Sensitivity and specificity of TBMDR and XDRA for cultured isolates were 81.2% and 95.8% for isoniazid (INH) resistance, 95.7% and 95.7% for rifampicin (RIF) resistance, 84.1% and 99.1% for fluoroquinolone (FQ) resistance, and 67.4% and 100% for second-line injectables resistance. The sensitivities of each drug were equivalent to other molecular DST methods. High concordance was observed when compared to direct-sequencing. We also found that TBMDR and XDRA assays can detect INH, RIF and FQ resistance in isolates with low level resistance-associated mutations which were missed by phenotypic DST. Our study showed TBMDR and XDRA assays could be the useful tools to detect MDR-TB and pre-XDR-TB.

4.
Tuberc Respir Dis (Seoul) ; 85(3): 264-272, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35196443

ABSTRACT

BACKGROUND: The current conventional drug susceptibility test (DST) for Mycobacterium tuberculosis (Mtb) takes several weeks of incubation to obtain results. As a rapid method, molecular DST requires only a few days to get the results but does not fully cover the phenotypic resistance. A new rapid method based on the ability of viable Mtb bacilli to hydrolyze fluorescein diacetate to free fluorescein with detection of fluorescent mycobacteria by flow cytometric analysis, was recently developed. METHODS: To evaluate this cytometric method, we tested 39 clinical isolates which were susceptible or resistant to isoniazid (INH) or rifampin (RIF), or ethambutol (EMB) by phenotypic or molecular DST methods and compared the results. RESULTS: The susceptibility was determined by measuring the viability rate of Mtb and all the isolates which were tested with INH, RIF, and EMB showed susceptibility results concordant with those by the phenotypic solid and liquid media methods. The isolates having no mutations in the molecular DST but resistance in the conventional phenotypic DST were also resistant in this cytometric method. These results suggest that the flow cytometric DST method is faster than conventional agar phenotypic DST and may complement the results of molecular DST. CONCLUSION: In conclusion, the cytometric method could provide quick and more accurate information that would help clinicians to choose more effective drugs.

5.
Diagnostics (Basel) ; 12(2)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35204460

ABSTRACT

Early diagnosis increases the treatment success rate for active tuberculosis (ATB) and decreases mortality. MicroRNAs (miRNAs) have been studied as blood-based markers of several infectious diseases. We performed miRNA profiling to identify differentially expressed (DE) miRNAs using whole blood samples from 10 healthy controls (HCs), 15 subjects with latent tuberculosis infection (LTBI), and 12 patients with ATB, and investigated the expression of the top six miRNAs at diagnosis and over the treatment period in addition to performing miRNA-target gene network and gene ontology analyses. miRNA profiling identified 84 DE miRNAs in patients with ATB, including 80 upregulated and four downregulated miRNAs. Receiver operating characteristic curves of the top six miRNAs exhibited excellent distinguishing efficiency with an area under curve (AUC) value > 0.85. Among them, miR-199a-3p and miR-6886-3p can differentiate between ATB and LTBI. Anti-TB treatment restored the levels of miR-199b-3p, miR-199a-3p, miR-16-5p, and miR-374c-5p to HC levels. Furthermore, 108 predicted target genes were related to the regulation of cellular amide metabolism, intrinsic apoptotic signaling, translation, transforming growth factor beta receptor signaling, and cysteine-type endopeptidase activity. The DE miRNAs identified herein are potential biomarkers for diagnosis and therapeutic monitoring in ATB.

6.
Vaccine ; 39(45): 6644-6652, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34642087

ABSTRACT

Conjugation of carbohydrate antigens with a carrier protein is a clinically proven strategy to overcome the poor immunogenicity of bacterial polysaccharide. In addition to its primary role, which is to help generate a T cell-mediate long-lasting immune response directed against the carbohydrate antigen, the carrier protein in a glycoconjugate vaccine can also play an important role as a protective antigen. Among carrier proteins currently used in licensed conjugate vaccines, non-typeable Haemophilus influenzae protein D has been used as an antigenically active carrier protein. Our previous studies also indicate that some carrier proteins provide B cell epitopes, along with T cell helper epitopes. Herein we investigated the dual role of truncated rotavirus spike protein ΔVP8* as a carrier and a protective antigen. Capsular polysaccharide lipoarabinomannan (LAM), purified from Mycobacterium tuberculosis (M.tb), was chemically conjugated with ΔVP8*. Mouse immunization experiments showed that the resultant conjugates elicited strong and specific immune responses against the polysaccharide antigen, and the responses were comparable to those induced by Diphtheria toxoid (DT)-based conjugates. The conjugate vaccine induced enhanced antibody titers and functional antibodies against ΔVP8* when compared to immunization with the unconjugated ΔVP8*. Thus, these results indicate that ΔVP8* can be a relevant carrier protein for glycoconjugate vaccine and the glycoconjugates consisting of ΔVP8* with LAM are effective bivalent vaccine candidates against rotavirus and tuberculosis.


Subject(s)
Haemophilus Vaccines , Mycobacterium tuberculosis , Rotavirus , Tuberculosis , Animals , Antibodies, Bacterial , Diarrhea , Mice , Polysaccharides, Bacterial , Tuberculosis/prevention & control , Vaccines, Combined , Vaccines, Conjugate
7.
J Clin Med ; 10(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34362035

ABSTRACT

An estimated 15-20% of patients who are treated for pulmonary tuberculosis (TB) are culture-negative at the time of diagnosis. Recent work has focused on the existence of differentially detectable Mycobacterium tuberculosis (Mtb) bacilli that do not grow under routine solid culture conditions without the addition of supplementary stimuli. We identified a cohort of TB patients in Lima, Peru, in whom acid-fast bacilli could be detected by sputum smear microscopy, but from whom Mtb could not be grown in standard solid culture media. When we attempted to re-grow Mtb from the frozen sputum samples of these patients, we found that 10 out of 15 could be grown in a glycerol-poor/lipid-rich medium. These fell into the following two groups: a subset that could be regrown in glycerol after "lipid-resuscitation", and a group that displayed a heritable glycerol-sensitive phenotype that were unable to grow in the presence of this carbon source. Notably, all of the glycerol-sensitive strains were found to be multidrug resistant. Although whole-genome sequencing of the lipid-resuscitated strains identified 20 unique mutations compared to closely related strains, no single genetic lesion could be associated with this phenotype. In summary, we found that lipid-based media effectively fostered the growth of Mtb from a series of sputum smear-positive samples that were not culturable in glycerol-based Lowenstein-Jensen or 7H9 media, which is consistent with Mtb's known preference for non-glycolytic sources during infection. Analysis of the recovered strains demonstrated that both genetic and non-genetic mechanisms contribute to the observed differential capturability, and suggested that this phenotype may be associated with drug resistance.

8.
Front Cell Infect Microbiol ; 11: 599386, 2021.
Article in English | MEDLINE | ID: mdl-33869073

ABSTRACT

Background: The Beijing strain of Mycobacterium tuberculosis (M. tb) has been most frequently isolated from TB patients in South Korea, and the hyper-virulent Beijing/K genotype is associated with TB outbreaks. To examine the diagnostic potential of Beijing/K-specific peptides, we performed IFN-γ release assays (IGRA) using a MTBK antigen tube containing Beijing/K MTBK_24800, ESAT-6, and CFP-10 peptides in a cohort studied during a school TB outbreak. Methods: A total of 758 contacts were investigated for M. tb infection, and 43 contacts with latent TB infection (LTBI) and 25 active TB patients were enrolled based on serial screening with QuantiFERON-TB Gold In-Tube tests followed by clinical examinations. Blood collected in MTBK antigen tubes was utilized for IGRA and multiplex cytokine bead arrays. Immune responses were retested in 24 patients after TB treatment, and disease progression was investigated in subjects with LTBI. Results: Total proportions of active disease and LTBI during the outbreak were 3.7% (28/758) and 9.2% (70/758), respectively. All clinical isolates had a Beijing/K M. tb genotype. IFN-γ responses to the MTBK antigen identified M. tb infection and distinguished between active disease and LTBI. After anti-TB treatment, IFN-γ responses to the MTBK antigen were significantly reduced, and strong TNF-α responses at diagnosis were dramatically decreased. Conclusions: MTBK antigen-specific IFN-γ has diagnostic potential for differentiating M. tb infection from healthy controls, and between active TB and LTBI as well. In addition, TNF-α is a promising marker for monitoring therapeutic responses. These data provide informative readouts for TB diagnostics and vaccine studies in regions where the Beijing/K strain is endemic.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antigens, Bacterial , Beijing/epidemiology , Cytokines , Disease Outbreaks , Humans , Mycobacterium tuberculosis/genetics , Schools , Tuberculosis/diagnosis , Tuberculosis/epidemiology
9.
Yonsei Med J ; 61(9): 789-796, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32882763

ABSTRACT

PURPOSE: The prevalence of Mycobacterium tuberculosis (M. tb) and the status of M. bovis BCG vaccination may affect host immune responses to M. tb antigens. Understanding of the predominant local M. tb strain and immune signatures induced by its strain-specific antigens may contribute to an improved diagnosis of tuberculosis (TB). The aim of this study was to determine immune responses to M. tb antigen which was identified from the hyper-virulent Beijing/K strain in South Korea. MATERIALS AND METHODS: Pulmonary TB patients (n=52) and healthy subjects (n=92) including individuals with latent TB infection (n=31) were recruited, and QuantiFERON-TB Gold In-Tube tests were performed. The Beijing/K-antigen specific immune signatures were examined by diluted whole blood assays and multiplex bead arrays in a setting where nationwide BCG vaccination is employed. RESULTS: Statistical analyses demonstrated that three [C-X-C motif chemokine (CXCL10), interleukin (IL)-6, interferon (IFN)-α] of 17 cytokines/chemokines distinguished active cases from healthy controls following stimulation with the Beijing/K-specific antigen. IFN-α also differentiated between active diseases and latent TB infection (p<0.01), and the detection rate of TB was dramatically increased in combination with IL-6 and CXCL10 at the highest levels of specificity (95-100%). CONCLUSION: Our data indicate that immune signatures to the M. tb Beijing/K-specific antigen can provide useful information for improved TB diagnostics. The antigen may be developed as a diagnostic marker or a vaccine candidate, particularly in regions where the M. tb Beijing/K strain is endemic.


Subject(s)
Latent Tuberculosis/diagnosis , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Pulmonary/diagnosis , Adolescent , Adult , Antigens, Bacterial/blood , Antigens, Bacterial/genetics , Antigens, Surface/blood , Antigens, Surface/genetics , Bacterial Proteins , Beijing , Case-Control Studies , Cytokines/blood , Female , Humans , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Republic of Korea , Sensitivity and Specificity
10.
Sci Rep ; 10(1): 3825, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32123207

ABSTRACT

Although tuberculosis (TB) is a severe health problem worldwide, the current diagnostic methods are far from optimal. Metabolomics is increasingly being used in the study of infectious diseases. We performed metabolome profiling to identify potential biomarkers in patients with active TB. Serum samples from 21 patients with active pulmonary TB, 20 subjects with latent TB infection (LTBI), and 28 healthy controls were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by multivariate and univariate analyses. Metabolic profiles indicated higher serum levels of glutamate, sulfoxy methionine, and aspartate and lower serum levels of glutamine, methionine, and asparagine in active TB patients than in LTBI subjects or healthy controls. The ratios between metabolically related partners (glutamate/glutamine, sulfoxy methionine/methionine, and aspartate/asparagine) were also elevated in the active TB group. There was no significant difference in the serum concentration of these metabolites according to the disease extent or risk of relapse in active TB patients. Novel serum biomarkers such as glutamate, sulfoxy methionine, aspartate, glutamine, methionine, and asparagine are potentially useful for adjunctive, rapid, and noninvasive pulmonary TB diagnosis.


Subject(s)
Metabolomics , Tuberculosis, Pulmonary/blood , Adult , Aged , Biomarkers/blood , Female , Humans , Male , Middle Aged , Multivariate Analysis , Tuberculosis, Pulmonary/metabolism , Young Adult
11.
J Arthroplasty ; 35(3): 864-869, 2020 03.
Article in English | MEDLINE | ID: mdl-31708292

ABSTRACT

BACKGROUND: Antibiotic-loaded bone cement (ALBC) is used to deliver antimycobacterial agents into the focal lesion of musculoskeletal tuberculosis. Although kanamycin is currently used as an antimycobacterial agent for the treatment of multidrug-resistant tuberculosis, there is no information about its suitability in ALBC. METHODS: An in vitro experiment was conducted with cylindrical shape of 40 g of bone cement with 1, 2, and 3 g of kanamycin. Eluate (1 mL) was extracted from each specimen to measure the level of elution and antimycobacterial activity on days 1, 4, 7, 14, and 30. The quantity of kanamycin in eluates was evaluated by a liquid chromatography-mass spectrometry system, and the antimycobacterial activity of eluates against Mycobacterium tuberculosis H37Rv was calculated by comparing the minimal inhibitory concentration. The ultimate compression strength was conducted using a material testing system machine (Instron 3366; Instron, Norwood, MA) before and after elution. RESULTS: Eluates from ALBC containing 2 and 3 g of kanamycin had effective antimycobacterial activity for 30 days, whereas eluates from ALBC containing 1 g of kanamycin were partially active until day 30. The pre-eluted compression strength of kanamycin-loaded cement and vancomycin-loaded cement was weaker as they contained a larger amount of antibiotics. There was no statistical difference between the strength of all kanamycin regimens and 1 g of vancomycin in the ultimate compression test. After 30 days of elution, the strength of all kanamycin-loaded cement and vancomycin-loaded cement cylinders was significantly lower than that of initial specimens (P < .05). CONCLUSION: The antimycobacterial activity of ALBC containing more than 2 g of kanamycin was effective during a 30-day period. The ultimate compression strength of bone cement loaded with 1-3 g of kanamycin was comparable with 1 g of vancomycin while maintaining effective elution until day 30.


Subject(s)
Tuberculosis , Vancomycin , Anti-Bacterial Agents , Bone Cements , Humans , Kanamycin , Microbial Sensitivity Tests , Polymethyl Methacrylate
12.
Sci Rep ; 9(1): 15560, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31664157

ABSTRACT

Since ID93/GLA-SE was developed as a targeted BCG-prime booster vaccine, in the present study, we evaluated the protective efficacy of ID93/GLA-SE as a boost to a BCG-prime against the hypervirulent Mycobacterium tuberculosis (Mtb) K challenge to provide further information on the development and application of this vaccine candidate. Boosting BCG with the ID93/GLA-SE vaccine significantly reduced bacterial burden at 16 weeks post-challenge while the BCG vaccine alone did not confer significant protection against Mtb K. The pathological analysis of the lung from the challenged mice also showed the remarkably protective boosting effect of ID93/GLA-SE on BCG-immunised animals. Moreover, qualitative and quantitative analysis of the immune responses following ID93/GLA-SE-immunisation demonstrated that ID93/GLA-SE was able to elicit robust and sustained Th1-biased antigen-specific multifunctional CD4+ T-cell responses up to 16 weeks post-challenge as well as a high magnitude of an antigen-specific IgG response. Our findings demonstrate that the ID93/GLA-SE vaccine candidate given as a BCG-prime boost regimen confers a high level of long-term protection against the hypervirulent Mtb Beijing infection. These findings will provide further and more feasible validation for the potential utility of this vaccine candidate particularly in East-Asian countries, with the predominance of the Beijing genotype, after BCG vaccination.


Subject(s)
BCG Vaccine/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis Vaccines/pharmacology , Tuberculosis/drug therapy , Animals , Antigens, Bacterial/immunology , BCG Vaccine/immunology , Beijing/epidemiology , Disease Models, Animal , Glucosides/pharmacology , Humans , Immunization, Secondary , Lipid A/pharmacology , Mice , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Th1 Cells/immunology , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/pathology , Tuberculosis Vaccines/immunology , Vaccination
13.
Infect Immun ; 88(1)2019 12 17.
Article in English | MEDLINE | ID: mdl-31591165

ABSTRACT

Despite the great increase in the understanding of the biology and pathogenesis of Mycobacterium tuberculosis achieved by the scientific community in recent decades, tuberculosis (TB) still represents one of the major threats to global human health. The only available vaccine (Mycobacterium bovis BCG) protects children from disseminated forms of TB but does not effectively protect adults from the respiratory form of the disease, making the development of new and more-efficacious vaccines against the pulmonary forms of TB a major goal for the improvement of global health. Among the different strategies being developed to reach this goal is the construction of attenuated strains more efficacious and safer than BCG. We recently showed that a sigE mutant of M. tuberculosis was more attenuated and more efficacious than BCG in a mouse model of infection. In this paper, we describe the construction and characterization of an M. tuberculosissigE fadD26 unmarked double mutant fulfilling the criteria of the Geneva Consensus for entering human clinical trials. The data presented suggest that this mutant is even more attenuated and slightly more efficacious than the previous sigE mutant in different mouse models of infection and is equivalent to BCG in a guinea pig model of infection.


Subject(s)
Ligases/deficiency , Mycobacterium tuberculosis/immunology , Sigma Factor/deficiency , Tuberculosis Vaccines/immunology , Tuberculosis, Pulmonary/prevention & control , Animals , Bacterial Proteins , Disease Models, Animal , Guinea Pigs , Mice , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Tuberculosis Vaccines/adverse effects , Tuberculosis Vaccines/genetics , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Virulence
14.
mBio ; 10(4)2019 07 30.
Article in English | MEDLINE | ID: mdl-31363023

ABSTRACT

Despite the administration of multiple drugs that are highly effective in vitro, tuberculosis (TB) treatment requires prolonged drug administration and is confounded by the emergence of drug-resistant strains. To understand the mechanisms that limit antibiotic efficacy, we performed a comprehensive genetic study to identify Mycobacterium tuberculosis genes that alter the rate of bacterial clearance in drug-treated mice. Several functionally distinct bacterial genes were found to alter bacterial clearance, and prominent among these was the glpK gene that encodes the glycerol-3-kinase enzyme that is necessary for glycerol catabolism. Growth on glycerol generally increased the sensitivity of M. tuberculosis to antibiotics in vitro, and glpK-deficient bacteria persisted during antibiotic treatment in vivo, particularly during exposure to pyrazinamide-containing regimens. Frameshift mutations in a hypervariable homopolymeric region of the glpK gene were found to be a specific marker of multidrug resistance in clinical M. tuberculosis isolates, and these loss-of-function alleles were also enriched in extensively drug-resistant clones. These data indicate that frequently observed variation in the glpK coding sequence produces a drug-tolerant phenotype that can reduce antibiotic efficacy and may contribute to the evolution of resistance.IMPORTANCE TB control is limited in part by the length of antibiotic treatment needed to prevent recurrent disease. To probe mechanisms underlying survival under antibiotic pressure, we performed a genetic screen for M. tuberculosis mutants with altered susceptibility to treatment using the mouse model of TB. We identified multiple genes involved in a range of functions which alter sensitivity to antibiotics. In particular, we found glycerol catabolism mutants were less susceptible to treatment and that common variation in a homopolymeric region in the glpK gene was associated with drug resistance in clinical isolates. These studies indicate that reversible high-frequency variation in carbon metabolic pathways can produce phenotypically drug-tolerant clones and have a role in the development of resistance.


Subject(s)
Antitubercular Agents/pharmacology , Glycerol Kinase/genetics , Mycobacterium tuberculosis/genetics , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects
15.
J Cell Sci ; 132(17)2019 09 05.
Article in English | MEDLINE | ID: mdl-31371491

ABSTRACT

In a previous study, we have identified MTBK_24820, the complete protein form of PPE39 in the hypervirulent Mycobacterium tuberculosis (Mtb) strain Beijing/K by using comparative genomic analysis. PPE39 exhibited vaccine potential against Mtb challenge in a murine model. Thus, in this present study, we characterize PPE39-induced immunological features by investigating the interaction of PPE39 with dendritic cells (DCs). PPE39-treated DCs display reduced dextran uptake and enhanced MHC-I, MHC-II, CD80 and CD86 expression, indicating that this PPE protein induces phenotypic DC maturation. In addition, PPE39-treated DCs produce TNF-α, IL-6 and IL-12p70 to a similar and/or greater extent than lipopolysaccharide-treated DCs in a dose-dependent manner. The activating effect of PPE39 on DCs was mediated by TLR4 through downstream MAPK and NF-κB signaling pathways. Moreover, PPE39-treated DCs promoted naïve CD4+ T-cell proliferation accompanied by remarkable increases of IFN-γ and IL-2 secretion levels, and an increase in the Th1-related transcription factor T-bet but not in Th2-associated expression of GATA-3, suggesting that PPE39 induces Th1-type T-cell responses through DC activation. Collectively, the results indicate that the complete form of PPE39 is a so-far-unknown TLR4 agonist that induces Th1-cell biased immune responses by interacting with DCs.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Antigens, Bacterial/immunology , Dendritic Cells/immunology , Mycobacterium tuberculosis/immunology , Th1 Cells/immunology , Animals , Bacterial Proteins/immunology , Cell Differentiation/immunology , Cell Polarity/immunology , Cell Proliferation , Dendritic Cells/microbiology , Humans , Lipopolysaccharides/pharmacology , Mice , Mycobacterium tuberculosis/genetics , Signal Transduction , Th1 Cells/microbiology , Tuberculosis Vaccines/immunology
16.
Nat Commun ; 10(1): 2928, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31266959

ABSTRACT

Stochastic formation of Mycobacterium tuberculosis (Mtb) persisters achieves a high level of antibiotic-tolerance and serves as a source of multidrug-resistant (MDR) mutations. As conventional treatment is not effective against infections by persisters and MDR-Mtb, novel therapeutics are needed. Several approaches were proposed to kill persisters by altering their metabolism, obviating the need to target active processes. Here, we adapted a biofilm culture to model Mtb persister-like bacilli (PLB) and demonstrated that PLB underwent trehalose metabolism remodeling. PLB use trehalose as an internal carbon to biosynthesize central carbon metabolism intermediates instead of cell surface glycolipids, thus maintaining levels of ATP and antioxidants. Similar changes were identified in Mtb following antibiotic-treatment, and MDR-Mtb as mechanisms to circumvent antibiotic effects. This suggests that trehalose metabolism is associated not only with transient drug-tolerance but also permanent drug-resistance, and serves as a source of adjunctive therapeutic options, potentiating antibiotic efficacy by interfering with adaptive strategies.


Subject(s)
Drug Resistance, Multiple, Bacterial , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Trehalose/metabolism , Adenosine Triphosphate/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalysis , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Humans , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology
17.
Front Immunol ; 10: 896, 2019.
Article in English | MEDLINE | ID: mdl-31105706

ABSTRACT

Background: It is important to understand the ability to inhibit mycobacterial growth in healthy adults who would have been Bacillus Calmette-Guérin (BCG) vaccinated in childhood as this group will be the potential target population for novel booster TB vaccine trials. In this study we investigated not only the long-term immunity induced by childhood BCG vaccination but also protective immunity in terms of the ability to inhibit mycobacterial growth in those who were BCG vaccinated in childhood, with evidence of recent or remote TB infection. Methods: We measured the baseline immune response using a functional mycobacterial growth inhibition assay (MGIA) as a novel approach and an intracellular cytokine staining (ICS) assay as a reference approach in healthy adults, with different status of Mycobacterium tuberculosis (Mtb) infection. Results: Based on MGIA responses in historically BCG-vaccinated healthy adults, demographical characteristics including age, and gender did not affect mycobacterial growth inhibition in PBMC. However, the uninfected healthy control (HC) group showed a greater ability to inhibit mycobacterial growth compared with the latent TB infection (LTBI) group (P = 0.0005). In terms of the M. tuberculosis antigen-specific T-cell immune response in diluted whole blood quantitated using an ICS assay, the LTBI group had a higher frequency of polyfunctional CD 4+ T cells compared with the HC group (P = 0.0002), although there was no correlation between ICS and the MGIA assay. Conclusion: The Mtb infection status had a significant impact on mycobacterial growth inhibition in PBMC from healthy adults in South Korea, a country with an intermediate burden of tuberculosis, with healthy controls showing the greatest mycobacterial growth inhibition.


Subject(s)
BCG Vaccine/immunology , Latent Tuberculosis/immunology , Mycobacterium tuberculosis/growth & development , Tuberculosis Vaccines/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/prevention & control , Adult , CD4-Positive T-Lymphocytes/immunology , Cross-Sectional Studies , Cytokines/blood , Female , Humans , Male , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/immunology , Republic of Korea , Vaccination
18.
Yonsei Med J ; 60(4): 375-380, 2019 04.
Article in English | MEDLINE | ID: mdl-30900424

ABSTRACT

PURPOSE: This study aimed to evaluate ichroma™ IGRA-TB, a novel point-of-care platform for assaying IFN-γ release, and to compare it with QuantiFERON-TB Gold In-Tube (QFT-GIT) for identifying Mycobacterium tuberculosis (M. tb) infection. MATERIALS AND METHODS: We recruited 60 healthy subjects, and blood samples were obtained in QFT-GIT blood collection tubes. The blood collection tubes were incubated at 37°C, and culture supernatant was harvested after 18-24 hours. IFN-γ responses were assessed by the ichroma™ IGRA-TB cartridge and the QFT-GIT IFN-γ enzyme-linked immunosorbent assay. Three active TB patients were recruited as a positive control for M. tb infection. RESULTS: The area under the receiver operating characteristic curve of the ichroma™ IGRA-TB test for differentiating between infected and non-infected individuals was 0.9706 (p<0.001). Inconsistent positivity between the two tests was found in three participants who showed weak positive IFN-γ responses (<1.0 IU/mL) with QFT-GIT. However, the two tests had excellent agreement (95.2%, κ=0.91, p<0.001), and a very strong positive correlation was observed between the IFN-γ values of both tests (r=0.91, p<0.001). CONCLUSION: The diagnostic accuracy demonstrated in this study indicates that the ichroma™ IGRA-TB test could be used as a rapid diagnostic method for detecting latent TB infection. It may be particularly beneficial in resource-limited places that require cost-effective laboratory diagnostics.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Interferon-gamma Release Tests/methods , Interferon-gamma/blood , Latent Tuberculosis/diagnosis , Mycobacterium tuberculosis/isolation & purification , Point-of-Care Systems , Tuberculin Test/methods , Adult , Area Under Curve , Case-Control Studies , Feasibility Studies , Female , Humans , Interferon-gamma/analysis , Latent Tuberculosis/ethnology , Latent Tuberculosis/immunology , Male , Mycobacterium tuberculosis/immunology , ROC Curve , Reagent Kits, Diagnostic , Republic of Korea/epidemiology , Young Adult
19.
Front Microbiol ; 10: 220, 2019.
Article in English | MEDLINE | ID: mdl-30809214

ABSTRACT

Our group recently identified InsB, an ESAT-6-like antigen belonging to the Mtb9.9 subfamily within the Esx family, in the Mycobacterium tuberculosis Korean Beijing strain (Mtb K) via a comparative genomic analysis with that of the reference Mtb H37Rv and characterized its immunogenicity and its induced immune response in patients with tuberculosis (TB). However, the vaccine potential of InsB has not been fully elucidated. In the present study, InsB was evaluated as a subunit vaccine in comparison with the most well-known ESAT-6 against the hypervirulent Mtb K. Mice immunized with InsB/MPL-DDA exhibited an antigen-specific IFN-γ response along with antigen-specific effector/memory T cell expansion in the lungs and spleen upon antigen restimulation. In addition, InsB immunization markedly induced multifunctional Th1-type CD4+ T cells coexpressing TNF-α, IL-2, and IFN-γ in the lungs following Mtb K challenge. Finally, we found that InsB immunization conferred long-term protection against Mtb K comparable to that conferred by ESAT-6 immunization, as evidenced by a similar level of CFU reduction in the lung and spleen and reduced lung inflammation. These results suggest that InsB may be an excellent vaccine antigen component for developing a multiantigenic Mtb subunit vaccine by generating Th1-biased memory T cells with a multifunctional capacity and may confer durable protection against the highly virulent Mtb K.

20.
Trials ; 20(1): 57, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30651149

ABSTRACT

BACKGROUND: Treatment success rates of multidrug-resistant tuberculosis (MDR-TB) remain unsatisfactory, and long-term use of second-line anti-TB drugs is accompanied by the frequent occurrence of adverse events, low treatment compliance, and high costs. The development of new efficient regimens with shorter treatment durations for MDR-TB will solve these issues and improve treatment outcomes. METHODS: This study is a phase II/III, multicenter, randomized, open-label clinical trial of non-inferiority design comparing a new regimen to the World Health Organization-endorsed conventional regimen for fluoroquinolone-sensitive MDR-TB. The control arm uses a conventional treatment regimen with second-line drugs including injectables for 20-24 months. The investigational arm uses a new shorter regimen including delamanid, linezolid, levofloxacin, and pyrazinamide for 9 or 12 months depending on time to sputum culture conversion. The primary outcome is the treatment success rate at 24 months after treatment initiation. Secondary outcomes include time to sputum culture conversion on liquid and solid media, proportions of sputum culture conversion on liquid media after 2 and 6 months of treatment, treatment success rate according to pyrazinamide resistance, and occurrence of adverse events grade 3 and above as evaluated by the Common Terminology Criteria for Adverse Events. Based on an α = 0.025 level of significance (one-sided test), a power of 80%, and a < 10% difference in treatment success rate between the control and investigational arms (80% vs. 70%) when the anticipated actual success rate in the treatment group is assumed to be 90%, the number of participants needed per arm to show non-inferiority of the investigational regimen was calculated as 48. Additionally, assuming the proportion of fluoroquinolone-susceptible MDR-TB among participants as 50%, and 5% loss to follow-up, the number of participants is calculated as N/( 0.50 × 0.95), resulting in 102 persons per group (204 in total). DISCUSSION: This trial will reveal the effectiveness and safety of a new shorter regimen comprising four oral drugs, including delamanid, linezolid, levofloxacin, and pyrazinamide, for the treatment of fluoroquinolone-sensitive MDR-TB. Results from this trial will provide evidence for adopting a shorter and more convenient treatment regimen for MDR-TB. TRIAL REGISTRATION: ClincalTrials.gov, NCT02619994 . Registered on 2 December 2015.


Subject(s)
Antitubercular Agents/administration & dosage , Drug Resistance, Multiple, Bacterial , Levofloxacin/administration & dosage , Linezolid/administration & dosage , Mycobacterium tuberculosis/drug effects , Nitroimidazoles/administration & dosage , Oxazoles/administration & dosage , Pyrazinamide/administration & dosage , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/drug therapy , Adult , Aged , Aged, 80 and over , Antitubercular Agents/adverse effects , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Drug Administration Schedule , Drug Therapy, Combination , Equivalence Trials as Topic , Female , Humans , Levofloxacin/adverse effects , Linezolid/adverse effects , Male , Middle Aged , Multicenter Studies as Topic , Mycobacterium tuberculosis/pathogenicity , Nitroimidazoles/adverse effects , Oxazoles/adverse effects , Pyrazinamide/adverse effects , Republic of Korea , Time Factors , Treatment Outcome , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...