Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Food Sci Biotechnol ; 33(8): 1931-1937, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752113

ABSTRACT

The emergence of antibiotic resistance in Acinetobacter spp. is a rising public health concern worldwide. The objective of this study was to investigate the prevalence of antibiotic-resistance genes and the virulence of Acinetobacter spp. isolated from soil and crops obtained from agricultural fields in South Korea. Eight Acinetobacter spp. isolates carried various antibiotic resistance genes, such as emrAB (100%), cat/craA (100%), and aadA gene (87.5%). Minimum inhibitory concentration (MIC) analysis revealed that strains harboring antibiotic resistance genes exhibited high resistance to the respective antibiotics, such as colistin, chloramphenicol, and streptomycin. Interestingly, most of these isolates had high capability of biofilm formation and swarming motility, along with faster growth rates. Taken together, our study demonstrated that antibiotic-resistant Acinetobacter isolated from agricultural settings in South Korea not only frequently carries antibiotic resistance genes but also has virulence-related traits. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01496-7.

2.
Environ Microbiol Rep ; 16(1): e13226, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38298071

ABSTRACT

Flavobacterium plurextorum is a potential fish pathogen of interest, previously isolated from diseased rainbow trout (Oncorhynchus mykiss) and oomycete-infected chum salmon (Oncorhynchus keta) eggs. We report here the first complete genome sequence of F. plurextorum RSG-18 isolated from the gut of Schlegel's black rockfish (Sebastes schlegelii). The genome of RSG-18 consists of a circular chromosome of 5,610,911 bp with a 33.57% GC content, containing 4858 protein-coding genes, 18 rRNAs, 63 tRNAs and 1 tmRNA. A comparative analysis was conducted on 11 Flavobacterium species previously reported as pathogens or isolated from diseased fish to confirm the potential pathogenicity of RSG-18. In the SEED classification, RSG-18 was found to have 36 genes categorized in 'Virulence, Disease and Defense'. Across all Flavobacterium species, a total of 16 antibiotic resistance genes and 61 putative virulence factors were identified. All species had at least one phage region and type I, III and IX secretion systems. In pan-genomic analysis, core genes consist of genes linked to phages, integrases and matrix-tolerated elements associated with pathology. The complete genome sequence of F. plurextorum RSG-18 will serve as a foundation for future research, enhancing our understanding of Flavobacterium pathogenicity in fish and contributing to the development of effective prevention strategies.


Subject(s)
Bacteriophages , Fish Diseases , Oncorhynchus mykiss , Perciformes , Animals , Flavobacterium/genetics , Virulence/genetics , Virulence Factors/genetics , Fishes/microbiology , Fish Diseases/microbiology , Oncorhynchus mykiss/microbiology
3.
PLoS One ; 18(3): e0277471, 2023.
Article in English | MEDLINE | ID: mdl-36913349

ABSTRACT

Unlike other Cirsium in Korea, Cirsium nipponicum (Island thistle) is distributed only on Ulleung Island, a volcanic island off the east coast of the Korean Peninsula, and a unique thistle with none or very small thorns. Although many researchers have questioned the origin and evolution of C. nipponicum, there is not much genomic information to estimate it. We thus assembled the complete chloroplast of C. nipponicum and reconstructed the phylogenetic relationships within the genus Cirsium. The chloroplast genome was 152,586 bp, encoding 133 genes consisting of 8 rRNA genes, 37 tRNA genes, and 88 protein-coding genes. We found 833 polymorphic sites and eight highly variable regions in chloroplast genomes of six Cirsium species by calculating nucleotide diversity, as well as 18 specific variable regions distinguished C. nipponicum from other Cirsium. As a result of phylogenetic analysis, C. nipponicum was closer to C. arvense and C. vulgare than native Cirsium in Korea: C. rhinoceros and C. japonicum. These results indicate that C. nipponicum is likely introduced through the north Eurasian root, not the mainland, and evolved independently in Ulleung Island. This study contributes to further understanding the evolutionary process and the biodiversity conservation of C. nipponicum on Ulleung Island.


Subject(s)
Cirsium , Genome, Chloroplast , Phylogeny , Genome, Chloroplast/genetics , Korea , Biodiversity , Republic of Korea
4.
Nucleic Acids Res ; 51(D1): D1010-D1018, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36350646

ABSTRACT

HGTree is a database that provides horizontal gene transfer (HGT) event information on 2472 prokaryote genomes using the tree-reconciliation method. HGTree was constructed in 2015, and a large number of prokaryotic genomes have been additionally published since then. To cope with the rapid rise of prokaryotic genome data, we present HGTree v2.0 (http://hgtree2.snu.ac.kr), a newly updated version of our HGT database with much more extensive data, including a total of 20 536 completely sequenced non-redundant prokaryotic genomes, and more reliable HGT information results curated with various steps. As a result, HGTree v2.0 has a set of expanded data results of 6 361 199 putative horizontally transferred genes integrated with additional functional information such as the KEGG pathway, virulence factors and antimicrobial resistance. Furthermore, various visualization tools in the HGTree v2.0 database website provide intuitive biological insights, allowing the users to investigate their genomes of interest.


Subject(s)
Databases, Genetic , Gene Transfer, Horizontal , Genome, Bacterial , Evolution, Molecular , Gene Transfer, Horizontal/genetics , Genome, Bacterial/genetics , Phylogeny , Prokaryotic Cells
5.
Genome Biol ; 23(1): 204, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36167554

ABSTRACT

BACKGROUND: Many short-read genome assemblies have been found to be incomplete and contain mis-assemblies. The Vertebrate Genomes Project has been producing new reference genome assemblies with an emphasis on being as complete and error-free as possible, which requires utilizing long reads, long-range scaffolding data, new assembly algorithms, and manual curation. A more thorough evaluation of the recent references relative to prior assemblies can provide a detailed overview of the types and magnitude of improvements. RESULTS: Here we evaluate new vertebrate genome references relative to the previous assemblies for the same species and, in two cases, the same individuals, including a mammal (platypus), two birds (zebra finch, Anna's hummingbird), and a fish (climbing perch). We find that up to 11% of genomic sequence is entirely missing in the previous assemblies. In the Vertebrate Genomes Project zebra finch assembly, we identify eight new GC- and repeat-rich micro-chromosomes with high gene density. The impact of missing sequences is biased towards GC-rich 5'-proximal promoters and 5' exon regions of protein-coding genes and long non-coding RNAs. Between 26 and 60% of genes include structural or sequence errors that could lead to misunderstanding of their function when using the previous genome assemblies. CONCLUSIONS: Our findings reveal novel regulatory landscapes and protein coding sequences that have been greatly underestimated in previous assemblies and are now present in the Vertebrate Genomes Project reference genomes.


Subject(s)
Genome , Vertebrates , Animals , Base Composition/genetics , Chromosomes , Genome/genetics , Sequence Analysis, DNA , Vertebrates/genetics
6.
Genome Biol ; 23(1): 205, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36167596

ABSTRACT

BACKGROUND: False duplications in genome assemblies lead to false biological conclusions. We quantified false duplications in popularly used previous genome assemblies for platypus, zebra finch, and Anna's Hummingbird, and their new counterparts of the same species generated by the Vertebrate Genomes Project, of which the Vertebrate Genomes Project pipeline attempted to eliminate false duplications through haplotype phasing and purging. These assemblies are among the first generated by the Vertebrate Genomes Project where there was a prior chromosomal level reference assembly to compare with. RESULTS: Whole genome alignments revealed that 4 to 16% of the sequences are falsely duplicated in the previous assemblies, impacting hundreds to thousands of genes. These lead to overestimated gene family expansions. The main source of the false duplications is heterotype duplications, where the haplotype sequences were relatively more divergent than other parts of the genome leading the assembly algorithms to classify them as separate genes or genomic regions. A minor source is sequencing errors. Ancient ATP nucleotide binding gene families have a higher prevalence of false duplications compared to other gene families. Although present in a smaller proportion, we observe false duplications remaining in the Vertebrate Genomes Project assemblies that can be identified and purged. CONCLUSIONS: This study highlights the need for more advanced assembly methods that better separate haplotypes and sequence errors, and the need for cautious analyses on gene gains.


Subject(s)
Genome , Genomics , Adenosine Triphosphate , Animals , Gene Duplication , Nucleotides , Sequence Analysis, DNA/methods , Vertebrates/genetics
7.
Sci Rep ; 12(1): 13274, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918353

ABSTRACT

Over the past decades, accumulating evidences have highlighted the gut microbiota as a key player in the brain functioning via microbiota-gut-brain axis, and accordingly, the beneficial role of several probiotic strains in cognitive ability also have been actively investigated. However, the majority of the research have demonstrated the effects against age-related cognitive decline or neurological disease. To this end, we aimed to investigate lactic acid bacteria strains having beneficial effects on the cognitive function of healthy young mice and elucidate underlying characteristics by carrying out nanopore sequencing-based genomics and metagenomics analysis. 8-week consumption of Streptococcus thermophilus EG007 demonstrated marked enhancements in behavior tests assessing short-term spatial and non-spatial learning and memory. It was revealed that EG007 possessed genes encoding various metabolites beneficial for a health condition in many aspects, including gamma-aminobutyric acid producing system, a neurotransmitter associated with mood and stress response. Also, by utilizing 16S-23S rRNA operon as a taxonomic marker, we identified more accurate species-level compositional changes in gut microbiota, which was increase of certain species, previously reported to have associations with mental health or down-regulation of inflammation or infection-related species. Moreover, correlation analysis revealed that the EG007-mediated altered microbiota had a significant correlation with the memory traits.


Subject(s)
Nanopore Sequencing , Streptococcus thermophilus , Animals , Metagenome , Metagenomics , Mice , RNA, Ribosomal, 16S/genetics , Streptococcus thermophilus/genetics
8.
Genes Genomics ; 44(8): 937-944, 2022 08.
Article in English | MEDLINE | ID: mdl-35665465

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic began in 2019 but it remains as a serious threat today. To reduce and prevent spread of the virus, multiple vaccines have been developed. Despite the efforts in developing vaccines, Omicron strain of the virus has recently been designated as a variant of concern (VOC) by the World Health Organization (WHO). OBJECTIVE: To develop a vaccine candidate against Omicron strain (B.1.1.529, BA.1) of the SARS-CoV-19. METHODS: We applied reverse vaccinology methods for BA.1 and BA.2 as the vaccine target and a control, respectively. First, we predicted MHC I, MHC II and B cell epitopes based on their viral genome sequences. Second, after estimation of antigenicity, allergenicity and toxicity, a vaccine construct was assembled and tested for physicochemical properties and solubility. Third, AlphaFold2, RaptorX and RoseTTAfold servers were used to predict secondary structures and 3D structures of the vaccine construct. Fourth, molecular docking analysis was performed to test binding of our construct with angiotensin converting enzyme 2 (ACE2). Lastly, we compared mutation profiles on the epitopes between BA.1, BA.2, and wild type to estimate the efficacy of the vaccine. RESULTS: We collected a total of 10 MHC I, 9 MHC II and 5 B cell epitopes for the final vaccine construct for Omicron strain. All epitopes were predicted to be antigenic, non-allergenic and non-toxic. The construct was estimated to have proper stability and solubility. The best modelled tertiary structures were selected for molecular docking analysis with ACE2 receptor. CONCLUSIONS: These results suggest the potential efficacy of our newly developed vaccine construct as a novel vaccine candidate against Omicron strain of the coronavirus.


Subject(s)
COVID-19 , Viral Vaccines , Angiotensin-Converting Enzyme 2 , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Humans , Molecular Docking Simulation , SARS-CoV-2/genetics , Vaccine Development , Vaccinology/methods , Viral Vaccines/chemistry , Viral Vaccines/genetics
10.
Microbiol Spectr ; 10(2): e0201721, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35352997

ABSTRACT

Recent development of long-read sequencing platforms has enabled researchers to explore bacterial community structure through analysis of full-length 16S rRNA gene (∼1,500 bp) or 16S-ITS-23S rRNA operon region (∼4,300 bp), resulting in higher taxonomic resolution than short-read sequencing platforms. Despite the potential of long-read sequencing in metagenomics, resources and protocols for this technology are scarce. Here, we describe MIrROR, the database and analysis tool for metataxonomics using the bacterial 16S-ITS-23S rRNA operon region. We collected 16S-ITS-23S rRNA operon sequences extracted from bacterial genomes from NCBI GenBank and performed curation. A total of 97,781 16S-ITS-23S rRNA operon sequences covering 9,485 species from 43,653 genomes were obtained. For user convenience, we provide an analysis tool based on a mapping strategy that can be used for taxonomic profiling with MIrROR database. To benchmark MIrROR, we compared performance against publicly available databases and tool with mock communities and simulated data sets. Our platform showed promising results in terms of the number of species covered and the accuracy of classification. To encourage active 16S-ITS-23S rRNA operon analysis in the field, BLAST function and taxonomic profiling results with 16S-ITS-23S rRNA operon studies, which have been reported as BioProject on NCBI are provided. MIrROR (http://mirror.egnome.co.kr/) will be a useful platform for researchers who want to perform high-resolution metagenome analysis with a cost-effective sequencer such as MinION from Oxford Nanopore Technologies. IMPORTANCE Metabarcoding is a powerful tool to investigate community diversity in an economic and efficient way by amplifying a specific gene marker region. With the advancement of long-read sequencing technologies, the field of metabarcoding has entered a new phase. The technologies have brought a need for development in several areas, including new markers that long-read can cover, database for the markers, tools that reflect long-read characteristics, and compatibility with downstream analysis tools. By constructing MIrROR, we met the need for a database and tools for the 16S-ITS-23S rRNA operon region, which has recently been shown to have sufficient resolution at the species level. Bacterial community analysis using the 16S-ITS-23S rRNA operon region with MIrROR will provide new insights from various research fields.


Subject(s)
High-Throughput Nucleotide Sequencing , rRNA Operon , Bacteria/genetics , High-Throughput Nucleotide Sequencing/methods , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Sequence Analysis, DNA/methods , rRNA Operon/genetics
11.
BMC Biol ; 20(1): 20, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039029

ABSTRACT

BACKGROUND: Africa is an important watershed in the genetic history of domestic cattle, as two lineages of modern cattle, Bos taurus and B. indicus, form distinct admixed cattle populations. Despite the predominant B. indicus nuclear ancestry of African admixed cattle, B. indicus mitochondria have not been found on the continent. This discrepancy between the mitochondrial and nuclear genomes has been previously hypothesized to be driven by male-biased introgression of Asian B. indicus into ancestral African B. taurus. Given that this hypothesis mandates extreme demographic assumptions relying on random genetic drift, we propose a novel hypothesis of selection induced by mitonuclear incompatibility and assess these hypotheses with regard to the current genomic status of African admixed cattle. RESULTS: By analyzing 494 mitochondrial and 235 nuclear genome sequences, we first confirmed the genotype discrepancy between mitochondrial and nuclear genome in African admixed cattle: the absence of B. indicus mitochondria and the predominant B. indicus autosomal ancestry. We applied approximate Bayesian computation (ABC) to assess the posterior probabilities of two selection hypotheses given this observation. The results of ABC indicated that the model assuming both male-biased B. indicus introgression and selection induced by mitonuclear incompatibility explains the current genomic discrepancy most accurately. Subsequently, we identified selection signatures at autosomal loci interacting with mitochondria that are responsible for integrity of the cellular respiration system. By contrast with B. indicus-enriched genome ancestry of African admixed cattle, local ancestries at these selection signatures were enriched with B. taurus alleles, concurring with the key expectation of selection induced by mitonuclear incompatibility. CONCLUSIONS: Our findings support the current genome status of African admixed cattle as a potential outcome of male-biased B. indicus introgression, where mitonuclear incompatibility exerted selection pressure against B. indicus mitochondria. This study provides a novel perspective on African cattle demography and supports the role of mitonuclear incompatibility in the hybridization of mammalian species.


Subject(s)
Chromosomes , Hybridization, Genetic , Alleles , Animals , Bayes Theorem , Cattle/genetics , Genotype , Male , Mammals
12.
Microbiol Spectr ; 10(1): e0181521, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35019699

ABSTRACT

Evidence for the concept of the "gut-brain axis" (GBA) has risen. Many types of research demonstrated the mechanism of the GBA and the effect of probiotic intake. Although many studies have been reported, most were focused on neurodegenerative disease and, it is still not clear what type of bacterial strains have positive effects. We designed an experiment to discover a strain that positively affects brain function, which can be recognized through changes in cognitive processes using healthy mice. The experimental group consisted of a control group and three probiotic consumption groups, namely, Lactobacillus acidophilus, Lacticaseibacillus paracasei, and Lacticaseibacillus rhamnosus. Three experimental groups fed probiotics showed an improved cognitive ability by cognitive-behavioral tests, and the group fed on L. acidophilus showed the highest score. To provide an understanding of the altered microbial composition effect on the brain, we performed full 16S-23S rRNA sequencing using Nanopore, and operational taxonomic units (OTUs) were identified at species level. In the group fed on L. acidophilus, the intestinal bacterial ratio of Firmicutes and Proteobacteria phyla increased, and the bacterial proportions of 16 species were significantly different from those of the control group. We estimated that the positive results on the cognitive behavioral tests were due to the increased proportion of the L. acidophilus EG004 strain in the subjects' intestines since the strain can produce butyrate and therefore modulate neurotransmitters and neurotrophic factors. We expect that this strain expands the industrial field of L. acidophilus and helps understand the mechanism of the gut-brain axis. IMPORTANCE Recently, the concept of the "gut-brain axis" has risen and suggested that microbes in the GI tract affect the brain by modulating signal molecules. Although many pieces of research were reported in a short period, a signaling mechanism and the effects of a specific bacterial strain are still unclear. Besides, since most of the research was focused on neurodegenerative disease, the study with a healthy animal model is still insufficient. In this study, we show using a healthy animal model that a bacterial strain (Lactobacillus acidophilus EG004) has a positive effect on mouse cognitive ability. We experimentally verified an improved cognitive ability by cognitive behavioral tests. We performed full 16S-23S rRNA sequencing using a Nanopore MinION instrument and provided the gut microbiome composition at the species level. This microbiome composition consisted of candidate microbial groups as a biomarker that shows positive effects on cognitive ability. Therefore, our study suggests a new perspective for probiotic strain use applicable for various industrialization processes.


Subject(s)
Cognition , Feces/microbiology , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Lactobacillus acidophilus/genetics , Lactobacillus acidophilus/physiology , Metagenome , RNA, Ribosomal, 23S/genetics , Animals , Biodiversity , Brain-Gut Axis , Disease Models, Animal , Lactobacillus/genetics , Lactobacillus/physiology , Male , Mice , Mice, Inbred C57BL , Neurodegenerative Diseases , Probiotics/pharmacology , Probiotics/therapeutic use
13.
Front Microbiol ; 12: 697351, 2021.
Article in English | MEDLINE | ID: mdl-34630344

ABSTRACT

Lactobacillus acidophilus (L. acidophilus) is a representative probiotic and is widely used in many industrial products for its beneficial effects on human and animal health. This bacterium is exposed to harsh environments such as high temperatures for manufacturing industrial products, but cell yield under high temperatures is relatively low. To resolve this issue, we developed a new L. acidophilus strain with improved heat resistance while retaining the existing beneficial properties through the adaptive laboratory evolution (ALE) method. The newly developed strain, L. acidophilus EG008, has improved the existing limit of thermal resistance from 65°C to 75°C. Furthermore, we performed whole-genome sequencing and comparative genome analysis of wild-type and EG008 strains to unravel the molecular mechanism of improved heat resistance. Interestingly, only two single-nucleotide polymorphisms (SNPs) were different compared to the L. acidophilus wild-type. We identified that one of these SNPs is a non-synonymous SNP capable of altering the structure of MurD protein through the 435th amino acid change from serine to threonine. We believe that these results will directly contribute to any industrial field where L. acidophilus is applied. In addition, these results make a step forward in understanding the molecular mechanisms of lactic acid bacteria evolution under extreme conditions.

14.
Biology (Basel) ; 9(12)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287185

ABSTRACT

Ribosomal RNA is an indispensable molecule in living organisms that plays an essential role in protein synthesis. Especially in bacteria, 16S, 23S, and 5S rRNAs are usually co-transcribed as operons. Despite the positive effects of rRNA co-transcription on growth and reproduction rate, a recent study revealed that bacteria with unlinked rRNA operons are more widespread than expected. However, it is still unclear why the rRNA operon is broken. Here, we explored rRNA operon linkage status in 15,898 bacterial genomes and investigated whether they have common features or lifestyles; 574 genomes were found to have unlinked rRNA operons and tended to be phylogenetically conserved. Most of them were symbionts and showed enhanced symbiotic genomic features such as reduced genome size and high adenine-thymine (AT) content. In an eggNOG-mapper analysis, they were also found to have significantly fewer genes than rRNA operon-linked bacteria in the "transcription" and "energy production and conversion in metabolism" categories. These genomes also tend to decrease RNases related to the synthesis of ribosomes and tRNA processing. Based on these results, the disruption of the rRNA operon seems to be one of the tendencies associated with the characteristics of bacteria requiring a low dynamic range.

15.
Nat Genet ; 52(10): 1099-1110, 2020 10.
Article in English | MEDLINE | ID: mdl-32989325

ABSTRACT

Cattle pastoralism plays a central role in human livelihood in Africa. However, the genetic history of its success remains unknown. Here, through whole-genome sequence analysis of 172 indigenous African cattle from 16 breeds representative of the main cattle groups, we identify a major taurine × indicine cattle admixture event dated to circa 750-1,050 yr ago, which has shaped the genome of today's cattle in the Horn of Africa. We identify 16 loci linked to African environmental adaptations across crossbred animals showing an excess of taurine or indicine ancestry. These include immune-, heat-tolerance- and reproduction-related genes. Moreover, we identify one highly divergent locus in African taurine cattle, which is putatively linked to trypanotolerance and present in crossbred cattle living in trypanosomosis-infested areas. Our findings indicate that a combination of past taurine and recent indicine admixture-derived genetic resources is at the root of the present success of African pastoralism.


Subject(s)
Adaptation, Physiological/genetics , Breeding , Cattle , Genome , Whole Genome Sequencing , Africa , Alleles , Animals , Cattle/genetics , Genotype , Hot Temperature/adverse effects , Mosaicism , Polymorphism, Single Nucleotide , Reproduction/genetics , Whole Genome Sequencing/veterinary
16.
J Microbiol Biotechnol ; 30(5): 739-748, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32482940

ABSTRACT

In this study, a method of heat adaptation was implemented in an attempt to increase the upper thermal threshold of two Streptococcus thermophilus found in South Korea and identified the alterations in membrane fatty acid composition to adaptive response to heat. In order to develop heat tolerant lactic acid bacteria, heat treatment was continuously applied to bacteria by increasing temperature from 60°C until the point that no surviving cell was detected. Our results indicated significant increase in heat tolerance of heat-adapted strains compared to the wild type (WT) strains. In particular, the survival ratio of basically low heat-tolerant strain increased even more. In addition, the strains with improved heat tolerance acquired cross protection, which improved their survival ratio in acid, bile salts and osmotic conditions. A relation between heat tolerance and membrane fatty acid composition was identified. As a result of heat adaptation, the ratio of unsaturated to saturated fatty acids (UFA/SFA) and C18:1 relative concentration were decreased. C6:0 in only heatadapted strains and C22:0 in only the naturally high heat tolerant strain were detected. These results support the hypothesis, that the consequent increase of SFA ratio is a cellular response to environmental stresses such as high temperatures, and it is able to protect the cells from acid, bile salts and osmotic conditions via cross protection. This study demonstrated that the increase in heat tolerance can be utilized as a mean to improve bacterial tolerance against various environmental stresses.


Subject(s)
Cell Membrane/chemistry , Fatty Acids/analysis , Streptococcus thermophilus , Thermotolerance/physiology , Cell Membrane/physiology , Hot Temperature , Membrane Fluidity , Microbial Viability , Phylogeny , Probiotics , Republic of Korea , Streptococcus thermophilus/cytology , Streptococcus thermophilus/physiology , Streptococcus thermophilus/radiation effects
17.
Front Microbiol ; 10: 1683, 2019.
Article in English | MEDLINE | ID: mdl-31440213

ABSTRACT

Identifying the microbes present in probiotic products is an important issue in product quality control and public health. The most common methods used to identify genera containing species that produce lactic acid are matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA sequence analysis. However, the high cost of operation, difficulty in distinguishing between similar species, and limitations of the current sequencing technologies have made it difficult to obtain accurate results using these tools. To overcome these problems, a whole-genome shotgun sequencing approach has been developed along with various metagenomic classification tools. Widely used tools include the marker gene and k-mer methods, but their inevitable false-positives (FPs) hampered an accurate analysis. We therefore, designed a coverage-based pipeline to reduce the FP problem and to achieve a more reliable identification of species. The coverage-based pipeline described here not only shows higher accuracy for the detection of species and proportion analysis, based on mapping depth, but can be applied regardless of the sequencing platform. We believe that the coverage-based pipeline described in this study can provide appropriate support for probiotic quality control, addressing current labeling issues.

18.
Sci Rep ; 9(1): 10189, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31308384

ABSTRACT

Diseases prediction has been performed by machine learning approaches with various biological data. One of the representative data is the gut microbial community, which interacts with the host's immune system. The abundance of a few microorganisms has been used as markers to predict diverse diseases. In this study, we hypothesized that multi-classification using machine learning approach could distinguish the gut microbiome from following six diseases: multiple sclerosis, juvenile idiopathic arthritis, myalgic encephalomyelitis/chronic fatigue syndrome, acquired immune deficiency syndrome, stroke and colorectal cancer. We used the abundance of microorganisms at five taxonomy levels as features in 696 samples collected from different studies to establish the best prediction model. We built classification models based on four multi-class classifiers and two feature selection methods including a forward selection and a backward elimination. As a result, we found that the performance of classification is improved as we use the lower taxonomy levels of features; the highest performance was observed at the genus level. Among four classifiers, LogitBoost-based prediction model outperformed other classifiers. Also, we suggested the optimal feature subsets at the genus-level obtained by backward elimination. We believe the selected feature subsets could be used as markers to distinguish various diseases simultaneously. The finding in this study suggests the potential use of selected features for the diagnosis of several diseases.


Subject(s)
Disease/classification , Gastrointestinal Microbiome/genetics , Metagenomics/methods , Algorithms , Disease/genetics , Forecasting/methods , Humans , Machine Learning , Support Vector Machine
19.
Genes Genomics ; 40(1): 63-75, 2018 01.
Article in English | MEDLINE | ID: mdl-29892901

ABSTRACT

Artificial selection towards a desired phenotype/trait has modified the genomes of livestock dramatically that generated breeds that greatly differ in morphology, production and environmental adaptation traits. Angus cattle are among the famous cattle breeds developed for superior beef quality. This paper aimed at exploring genomic regions under selection in Angus cattle that are associated with meat quality traits and other associated phenotypes. The whole genome of 10 Angus cattle was compared with 11 Hanwoo (A-H) and 9 Jersey (A-J) cattle breeds using a cross-population composite likelihood ratio (XP-CLR) statistical method. The top 1% of the empirical distribution was taken as significant and annotated using UMD3.1. As a result, 255 and 210 genes were revealed under selection from A-H and A-J comparisons, respectively. The WebGestalt gene ontology analysis resulted in sixteen (A-H) and five (A-J) significantly enriched KEGG pathways. Several pathways associated with meat quality traits (insulin signaling, type II diabetes mellitus pathway, focal adhesion pathway, and ECM-receptor interaction), and feeding efficiency (olfactory transduction, tight junction, and metabolic pathways) were enriched. Genes affecting beef quality traits (e.g., FABP3, FTO, DGAT2, ACS, ACAA2, CPE, TNNI1), stature and body size (e.g., PLAG1, LYN, CHCHD7, RPS20), fertility and dystocia (e.g., ESR1, RPS20, PPP2R1A, GHRL, PLAG1), feeding efficiency (e.g., PIK3CD, DNAJC28, DNAJC3, GHRL, PLAG1), coat color (e.g., MC1-R) and genetic disorders (e.g., ITGB6, PLAG1) were found to be under positive selection in Angus cattle. The study identified genes and pathways that are related to meat quality traits and other phenotypes of Angus cattle. The findings in this study, after validation using additional or independent dataset, will provide useful information for the study of Angus cattle in particular and beef cattle in general.


Subject(s)
Cattle/genetics , Selection, Genetic/genetics , Animal Husbandry/methods , Animals , Biomarkers , Breeding , Gene Ontology , Genome , Genomics/methods , Genotype , Metabolic Networks and Pathways/genetics , Phenotype , Phylogeny , Red Meat/analysis , Transcriptome/genetics
20.
Genes Genomics ; 40(2): 217-223, 2018.
Article in English | MEDLINE | ID: mdl-29568414

ABSTRACT

Lactobacillus plantarum is one of the widely-used probiotics and there have been a large number of advanced researches on the effectiveness of this species. However, the difference between previously reported plantarum strains, and the source of genomic variation among the strains were not clearly specified. In order to understand further on the molecular basis of L. plantarum on Korean traditional fermentation, we isolated the L. plantarum GB-LP4 from Korean fermented vegetable and conducted whole genome assembly. With comparative genomics approach, we identified the candidate genes that are expected to have undergone evolutionary acceleration. These genes have been reported to associate with the maintaining homeostasis, which are generally known to overcome instability in external environment including low pH or high osmotic pressure. Here, our results provide an evolutionary relationship between L. plantarum species and elucidate the candidate genes that play a pivotal role in evolutionary acceleration of GB-LP4 in high osmolarity environment. This study may provide guidance for further studies on L. plantarum.


Subject(s)
Adaptation, Physiological , Biological Evolution , Lactobacillus plantarum/genetics , Osmolar Concentration , Fermentation , Genomics , Hydrogen-Ion Concentration , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/physiology , Phylogeny , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...