Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(20): 26613-26623, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728055

ABSTRACT

Strain gauges, particularly for wearable sensing applications, require a high degree of stretchability, softness, sensitivity, selectivity, and linearity. They must also steer clear of challenges such as mechanical and electrical hysteresis, overshoot behavior, and slow response/recovery times. However, current strain gauges face challenges in satisfying all of these requirements at once due to the inevitable trade-offs between these properties. Here, we present an innovative method for creating strain gauges from spongy Ag foam through a steam-etching process. This method simplifies the traditional, more complex, and costly manufacturing techniques, presenting an eco-friendly alternative. Uniquely, the strain gauges crafted from this method achieve an unparalleled gauge factor greater than 8 × 103 at strains exceeding 100%, successfully meeting all required attributes without notable trade-offs. Our work includes systematic investigations that reveal the intricate structure-property-performance relationship of the spongy Ag foam with practical demonstrations in areas such as human motion monitoring and human-robot interaction. These breakthroughs pave the way for highly sensitive and selective strain gauges, showing immediate applicability across a wide range of wearable sensing applications.

2.
Chem Rev ; 124(4): 1464-1534, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38314694

ABSTRACT

Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.


Subject(s)
Wearable Electronic Devices , Humans , Reproducibility of Results
3.
Sci Adv ; 10(1): eadk4295, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38170779

ABSTRACT

Advances in electroluminescent threads, suitable for weaving or knitting, have opened doors for the development of light-emitting textiles, driving growth in the market for flexible and wearable displays. Although direct embroidery of these textiles with custom designs and patterns could offer substantial benefits, the rigorous demands of machine embroidery challenge the integrity of these threads. Here, we present embroiderable multicolor electroluminescent threads-in blue, green, and yellow-that are compatible with standard embroidery machines. These threads can be used to stitch decorative designs onto various consumer fabrics without compromising their wear resistance or light-emitting capabilities. Demonstrations include illuminating specific messages or designs on consumer products and delivering emergency alerts on helmet liners for physical hazards. Our research delivers a comprehensive toolkit for integrating light-emitting textiles into trendy, customized crafts tailored to the unique requirements of diverse flexible and wearable displays.

SELECTION OF CITATIONS
SEARCH DETAIL