Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Med Phys ; 50(11): 7154-7166, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37431587

ABSTRACT

BACKGROUND: In radiation therapy, irradiating healthy normal tissues in the beam trajectories is inevitable. This unnecessary dose means that patients undergoing treatment risk developing side effects. Recently, FLASH radiotherapy delivering ultra-high-dose-rate beams has been re-examined because of its normal-tissue-sparing effect. To confirm the mean and instantaneous dose rates of the FLASH beam, stable and accurate dosimetry is required. PURPOSE: Detailed verification of the FLASH effect requires dosimeters and a method to measure the average and instantaneous dose rate stably for 2- or 3-dimensional dose distributions. To verify the delivered FLASH beam, we utilized machine log files from the built-in monitor chamber to develop a dosimetry method to calculate the dose and average/instantaneous dose rate distributions in two or three dimensions in a phantom. METHODS: To create a spread-out Bragg peak (SOBP) and deliver a uniform dose in a target, a mini-ridge filter was created with a 3D printer. Proton pencil beam line scanning plans of 2 × 2 cm2 , 3 × 3 cm2 , 4 × 4 cm2 , and round shapes with 2.3 cm diameter patterns delivering 230 MeV energy protons were created. The absorbed dose in the solid water phantom of each plan was measured using a PPC05 ionization chamber (IBA Dosimetry, Virginia, USA) in the SOBP region, and the log files for each plan were exported from the treatment control system console. Using these log files, the delivered dose and average dose rate were calculated using two methods: a direct method and a Monte Carlo (MC) simulation method that uses log file information. The computed and average dose rates were compared with the ionization chamber measurements. Additionally, instantaneous dose rates in user-defined volumes were calculated using the MC simulation method with a temporal resolution of 5 ms. RESULTS: Compared to ionization chamber dosimetry, 10 of 12 cases using the direct calculation method and 9 of 11 cases using the MC method had a dose difference below ±3%. Nine of 12 cases using the direct calculation method and 8 of 11 cases using the MC method had dose rate differences below ±3%. The average and maximum dose differences for the direct calculation and MC method were-0.17, +0.72%, and -3.15, +3.32%, respectively. For the dose rate difference, the average and maximum for the direct calculation and MC method were +1.26, +1.12%, and +3.75, +3.15%, respectively. In the instantaneous dose rate calculation with the MC simulation, a large fluctuation with a maximum of 163 Gy/s and a minimum of 4.29 Gy/s instantaneous dose rate was observed in a specific position, whereas the mean dose rate was 62 Gy/s. CONCLUSIONS: We successfully developed methods in which machine log files are used to calculate the dose and the average and instantaneous dose rates for FLASH radiotherapy and demonstrated the feasibility of verifying the delivered FLASH beams.


Subject(s)
Proton Therapy , Protons , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Proton Therapy/methods , Radiometry/methods , Monte Carlo Method
2.
Cancers (Basel) ; 14(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36230475

ABSTRACT

Background/Purpose: This study aimed to evaluate the clinical outcomes of stereotactic body proton beam therapy (SBPT) for pancreatic cancer. Methods: This retrospective study included 49 patients who underwent SBPT for pancreatic cancer between 2017 and 2020. Survival outcomes, bowel-related toxicities, and failure patterns were analysed. SBPT was performed after induction chemotherapy in 44 (89.8%) patients. The dose-fractionation scheme included 60 gray (Gy) relative biological effectiveness (RBE) in five fractions (n = 42, 85.7%) and 50 GyRBE in five fractions (n = 7, 14.3%). The median follow-up was 16.3 months (range, 1.8−45.0 months). Results: During follow-up, the best responses were complete response, partial response, and stable disease in four (8.2%), 13 (26.5%), and 31 (63.3%) patients, respectively. The 2-year overall survival, progression-free survival, and local control (LC) rates were 67.6%, 38.0%, and 73.0%, respectively. Grade ≥ 3 gastroduodenal (GD) toxicity occurred in three (6.1%) patients. Among them, one patient underwent endoscopic haemostasis. The other two patients received surgical management. They were followed up without disease progression for >30 months after SBPT. Overall, there was no significant dosimetric difference between the grade ≥ 2 and lower toxicity groups. Conclusions: SBPT provides relatively high LC rates with acceptable toxicities in pancreatic cancer.

3.
PLoS One ; 17(10): e0275719, 2022.
Article in English | MEDLINE | ID: mdl-36256632

ABSTRACT

For accurate respiration gated radiation therapy, compensation for the beam latency of the beam control system is necessary. Therefore, we evaluate deep learning models for predicting patient respiration signals and investigate their clinical feasibility. Herein, long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), and the Transformer are evaluated. Among the 540 respiration signals, 60 signals are used as test data. Each of the remaining 480 signals was spilt into training and validation data in a 7:3 ratio. A total of 1000 ms of the signal sequence (Ts) is entered to the models, and the signal at 500 ms afterward (Pt) is predicted (standard training condition). The accuracy measures are: (1) root mean square error (RMSE) and Pearson correlation coefficient (CC), (2) accuracy dependency on Ts and Pt, (3) respiratory pattern dependency, and (4) error for 30% and 70% of the respiration gating for a 5 mm tumor motion for latencies of 300, 500, and 700 ms. Under standard conditions, the Transformer model exhibits the highest accuracy with an RMSE and CC of 0.1554 and 0.9768, respectively. An increase in Ts improves accuracy, whereas an increase in Pt decreases accuracy. An evaluation of the regularity of the respiratory signals reveals that the lowest predictive accuracy is achieved with irregular amplitude patterns. For 30% and 70% of the phases, the average error of the three models is <1.4 mm for a latency of 500 ms and >2.0 mm for a latency of 700 ms. The prediction accuracy of the Transformer is superior to LSTM and Bi-LSTM. Thus, the three models have clinically applicable accuracies for a latency <500 ms for 10 mm of regular tumor motion. The clinical acceptability of the deep learning models depends on the inherent latency and the strategy for reducing the irregularity of respiration.


Subject(s)
Deep Learning , Neoplasms , Humans , Motion , Respiration , Protein Sorting Signals
4.
Radiat Oncol ; 17(1): 125, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35842636

ABSTRACT

BACKGROUND: The present study aimed to investigate the dosimetric impact of metal stent for photon and proton treatment plans in hepatocellular carcinoma. METHODS: With computed tomography data of a water-equivalent solid phantom, dose perturbation caused by a metal stent included in the photon and proton treatment of hepatocellular carcinoma was evaluated by comparing Eclipse and RayStation treatment planning system (TPS) to a Monte Carlo (MC) based dose calculator. Photon and proton plans were created with anterior-posterior/posterior-anterior (AP/PA) fields using a 6 MV beam and AP/PA fields of a wobbling beam using 150 MeV and a 10 cm ridge filter. The difference in dose distributions and dosimetric parameters were compared depending on the stent's positions (the bile duct (GB) and intestinal tract (GI)) and angles (0°, 45°, and 90°). Additionally, the dose variation in the target volume including the stent was comparatively evaluated through dose volume histogram (DVH) analysis. And the comparison of clinical cases was carried out in the same way. RESULTS: Percentage differences in the dosimetric parameters calculated by MC ranged from - 7.0 to 3.9% for the photon plan and - 33.7 to 4.3% for the proton plan, depending on the angle at which the GB and GI stents were placed, compared to those without the stent. The maximum difference was observed at the minimum dose (Dmin), which was observed in both photon and proton plans in the GB and GI stents deployed at a 90° incidence angle. The parameter differences were greater in the proton plan than in photon plan. The target volume showed various dose variations depending on positions and angles of stent for both beams. Compared with no-stent, the doses within the target volume containing the GI and GB stents for the photon beam were overestimated in the high-dose area at 0°, nearly equal within 1% at 45°, and underestimated at 90°. These doses to the proton beam were underestimated at all angles, and the amount of underdose to the target volume increased with an increase in the stent angle. However, the difference was significantly greater with the proton plan than the photon plan. CONCLUSIONS: Dose perturbations within the target volume due to the presence of the metal stent were not observed in the TPS calculations for photon and proton beams, but MC was used to confirm that there are dose variations within the target volume. The MC results found that delivery of the treatment beam avoiding the stent was the best method to prevent target volume underdose.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Algorithms , Carcinoma, Hepatocellular/radiotherapy , Humans , Liver Neoplasms/radiotherapy , Monte Carlo Method , Phantoms, Imaging , Proton Therapy/methods , Protons , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
5.
Cancer Res Treat ; 54(3): 907-916, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34665955

ABSTRACT

PURPOSE: This study aimed to compare the early hematological dynamics and acute toxicities between proton beam craniospinal irradiation (PrCSI) and photon beam craniospinal irradiation (PhCSI) for pediatric brain tumors. MATERIALS AND METHODS: We retrospectively reviewed patients with pediatric brain tumors who received craniospinal irradiation (CSI). The average change in hemoglobin levels (ΔHbavg), absolute lymphocyte counts (ΔALCavg), and platelet counts (ΔPLTavg) from baseline values was evaluated and compared between the PrCSI and PhCSI groups at 1 and 2 weeks after the initiation of CSI, 1 week before and at the end of radiotherapy, and 3-4 weeks after the completion of radiotherapy using t test and mixed-model analysis. RESULTS: The PrCSI and PhCSI groups consisted of 36 and 30 patients, respectively. There were no significant differences in ΔHbavg between the two groups at any timepoint. However, ΔALCavg and ΔPLTavg were significantly lower in the PhCSI group than in PrCSI group at every timepoint, demonstrating that PrCSI resulted in a significantly lower rate of decline and better recovery of absolute lymphocyte and platelet counts. The rate of grade 3 acute anemia was significantly lower in the PrCSI group than in in the PhCSI group. CONCLUSION: PrCSI showed a lower rate of decline and better recovery of absolute lymphocyte and platelet counts than PhCSI in the CSI for pediatric brain tumors. Grade 3 acute anemia was significantly less frequent in the PrCSI group than in the PhCSI group. Further large-scale studies are warranted to confirm these results.


Subject(s)
Anemia , Brain Neoplasms , Craniospinal Irradiation , Brain Neoplasms/radiotherapy , Child , Craniospinal Irradiation/adverse effects , Craniospinal Irradiation/methods , Humans , Protons , Radiotherapy Dosage , Retrospective Studies
6.
Med Phys ; 48(12): 8107-8116, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34628659

ABSTRACT

PURPOSE: We introduced an output factor (cGy/MU) prediction model for wobbling proton beams over the full range of proton energy, scatterer thickness, and the width of spread-out Bragg peak (SOBP). MATERIALS AND METHODS: From December 2015 to August 2020, 1990 wobbling proton fields were used to treat patients, where 1714 fields had a diameter smaller than 11 cm and 276 had a diameter between 11 and 16 cm, which were designated as small and middle wobbling radius cases, respectively. The output factor is defined as the ratio of proton absorbed dose at mid-depth of SOBP to monitor unit (MU). It depends dominantly on proton energy, scatterer thickness, and the width of SOBP. We established the prediction model using the polynomial fitting function and determined its coefficients for the small and middle wobbling radius cases. We evaluated the accuracy of our prediction model by calculating the difference between predicted and measured output factors. RESULTS: For the small wobbling radius cases, the mean value of the output factor difference was 0.22% with a standard deviation of 1.3%. For the middle wobbling radius cases, the mean value was 0.20% and with a standard deviation of 0.79%. The large deviation was especially observed for wobbling proton beams having small field size and small width of SOBP. CONCLUSIONS: We made a prediction model of output factor for wobbling proton beams, thereby determining MU of each beam. This included the dependency of the output factor on the proton energy between 70 and 230 MeV, scatterer thickness, and the width of SOBP. For 93.6% of the small and 95.5% of the middle wobbling radius cases, the deviation between predicted and measured output factor was below 3%. The cases with deviations of predicted and measured output factor above 3% had small field size and small width of SOBP. The accuracy of our prediction model would be improved by adopting the field size effect and measuring more cases of small field size and small SOBP width in the future.


Subject(s)
Proton Therapy , Algorithms , Humans , Protons , Radiotherapy Dosage
7.
PLoS One ; 16(2): e0246742, 2021.
Article in English | MEDLINE | ID: mdl-33577602

ABSTRACT

PURPOSE: We developed a compact and lightweight time-resolved mirrorless scintillation detector (TRMLSD) employing image processing techniques and a convolutional neural network (CNN) for high-resolution two-dimensional (2D) dosimetry. METHODS: The TRMLSD comprises a camera and an inorganic scintillator plate without a mirror. The camera was installed at a certain angle from the horizontal plane to collect scintillation from the scintillator plate. The geometric distortion due to the absence of a mirror and camera lens was corrected using a projective transform. Variations in brightness due to the distance between the image sensor and each point on the scintillator plate and the inhomogeneity of the material constituting the scintillator were corrected using a 20.0 × 20.0 cm2 radiation field. Hot pixels were removed using a frame-based noise-reduction technique. Finally, a CNN-based 2D dose distribution deconvolution model was applied to compensate for the dose error in the penumbra region and a lack of backscatter. The linearity, reproducibility, dose rate dependency, and dose profile were tested for a 6 MV X-ray beam to verify dosimeter characteristics. Gamma analysis was performed for two simple and 10 clinical intensity-modulated radiation therapy (IMRT) plans. RESULTS: The dose linearity with brightness ranging from 0.0 cGy to 200.0 cGy was 0.9998 (R-squared value), and the root-mean-square error value was 1.010. For five consecutive measurements, the reproducibility was within 3% error, and the dose rate dependency was within 1%. The depth dose distribution and lateral dose profile coincided with the ionization chamber data with a 1% mean error. In 2D dosimetry for IMRT plans, the mean gamma passing rates with a 3%/3 mm gamma criterion for the two simple and ten clinical IMRT plans were 96.77% and 95.75%, respectively. CONCLUSION: The verified accuracy and time-resolved characteristics of the dosimeter may be useful for the quality assurance of machines and patient-specific quality assurance for clinical step-and-shoot IMRT plans.


Subject(s)
Image Processing, Computer-Assisted/methods , Radiometry/instrumentation , Radiometry/methods , Radiotherapy, Intensity-Modulated/methods , Scintillation Counting/instrumentation , Scintillation Counting/methods , Gamma Cameras , Humans , Neural Networks, Computer , Radiotherapy Dosage , Reproducibility of Results , X-Rays
8.
Radiother Oncol ; 146: 187-193, 2020 05.
Article in English | MEDLINE | ID: mdl-32179362

ABSTRACT

BACKGROUND AND PURPOSE: Our study aimed to compare the oncologic outcomes and toxicities between passive scattering (PS) proton beam therapy (PBT) and pencil-beam scanning (PBS) PBT for primary hepatocellular carcinoma (HCC). MATERIALS AND METHODS: The multidisciplinary team for liver cancer identified the PBT candidates who were ineligible for resection or radiofrequency ablation. We retrospectively analyzed 172 patients who received PBT for primary HCC from January 2016 to December 2017. The PS with wobbling method was applied with both breath-hold and regular breathing techniques, while the PBS method was utilized only for regular breathing techniques covering the full amplitude of respiration. To maintain the balance of the variables between the PS and PBS groups, we performed propensity score matching. RESULTS: The median follow-up duration for the total cohort was 14 months (range, 1-31 months). After propensity score matching, a total of 103 patients (70 in the PS group and 33 in the PBS group) were included in analysis. There were no significant differences in the rates of overall survival (OS), in-field local control (IFLC), out-field intrahepatic control (OFIHC), extrahepatic progression-free survival (EHPFS), and complete response (CR) between the matched groups. In the subgroup analyses, no subgroup showed a significant difference in IFLC between the PS and PBS groups. There was also no significant difference in the toxicity profiles between the groups. CONCLUSION: There are no differences in oncologic outcomes, including OS, IFLC, OFIHC, EHPFS, and CR rates, or in the toxicity profiles between PS and PBS PBT for primary HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Proton Therapy , Carcinoma, Hepatocellular/radiotherapy , Humans , Liver Neoplasms/radiotherapy , Propensity Score , Proton Therapy/adverse effects , Retrospective Studies
9.
Med Phys ; 46(12): 5833-5847, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31621917

ABSTRACT

PURPOSE: The purpose of this study was to investigate the feasibility of two-dimensional (2D) dose distribution deconvolution using convolutional neural networks (CNNs) instead of an analytical approach for an in-house scintillation detector that has a detector-interface artifact in the penumbra region. METHODS: Datasets of 2D dose distributions were acquired from a medical linear accelerator of Novalis Tx. The datasets comprise two different sizes of square radiation fields and 13 clinical intensity-modulated radiation treatment (IMRT) plans. These datasets were divided into two datasets (training and test) to train and validate the developed network, called PenumbraNet, which is a shallow linear CNN. The PenumbraNet was trained to transform the measured dose distribution [M(x, y)] to calculated distribution [D(x, y)] by the treatment planning system. After training of the PenumbraNet was completed, the performance was evaluated using test data, which were 10 × 10 cm2 open field and ten clinical IMRT cases. The corrected dose distribution [C(x, y)] was evaluated against D(x, y) with 2%/2 mm and 3%/3 mm criteria of the gamma index for each field. The M(x, y) and deconvolved dose distribution with the analytically obtained kernel using Wiener filtering [A(x, y)] were also evaluated for comparison. In addition, we compared the performance of the shallow depth of linear PenumbraNet with that of nonlinear PenumbraNet and a deep nonlinear PenumbraNet within the same training epoch. RESULTS: The mean gamma passing rates were 84.77% and 95.81% with 3%/3 mm gamma criteria for A(x, y) and C(x, y) of the PenumbraNet, respectively. The mean gamma pass rates of nonlinear PenumbraNet and the deep depth of nonlinear PenumbraNet were 96.62%, 93.42% with 3%/3 mm gamma criteria, respectively. CONCLUSIONS: We demonstrated the feasibility of the PenumbraNets for 2D dose distribution deconvolution. The nonlinear PenumbraNet which has the best performance improved the gamma passing rate by 11.85% from the M(x, y) at 3%/3 mm gamma criteria.


Subject(s)
Neural Networks, Computer , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Feasibility Studies , Humans , Radiometry , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated
10.
Phys Med ; 55: 47-55, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30471819

ABSTRACT

PURPOSE: Scanning proton therapy has dosimetric advantage over passive treatment, but has a large penumbra in low-energy region. This study investigates the penumbra reduction when multi-leaf collimators (MLCs) are used for line scanning proton beams and secondary neutron production from MLCs. METHODS: Scanning beam plans with and without MLC shaping were devised. Line scanning proton plan of 36 energy layers between 71.2 and 155.2 MeV was generated. The MLCs were shaped according to the cross-sectional target shape for each energy layer. The two-dimensional doses were measured through an ion-chamber array, depending on the presence of MLC field, and Monte Carlo (MC) simulations were performed. The plan, measurement, and MC data, with and without MLC, were compared at each depth. The secondary neutron dose was simulated with MC. Ambient neutron dose equivalents were computed for the line scanning with 10 × 10 × 5 cm3 volume and maximum proton energy of 150 MeV, with and without MLCs, at lateral distances of 25-200 cm from the isocenter. The neutron dose for a wobbling plan with 10 × 10 × 5 cm3 volume was also evaluated. RESULTS: The lateral penumbra width using MLC was reduced by 23.2% on average, up to a maximum of 32.2%, over the four depths evaluated. The ambient neutron dose equivalent was 18.52% of that of the wobbling beam but was 353.1% larger than the scanning open field. CONCLUSIONS: MLC field shaping with line scanning reduced the lateral penumbra and should be effective in sparing normal tissue. However, it is important to investigate the increase in neutron dose.


Subject(s)
Proton Therapy/instrumentation , Monte Carlo Method , Neutrons , Radiotherapy Dosage , Rotation
11.
Radiat Oncol J ; 36(2): 129-138, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29983033

ABSTRACT

PURPOSE: This study was conducted to compare clinical outcomes and treatment-related toxicities after stereotactic body radiation therapy (SBRT) with two different dose regimens for small hepatocellular carcinomas (HCC) ≤3 cm in size. Materials and. METHODS: We retrospectively reviewed 44 patients with liver-confined HCC treated between 2009 and 2014 with SBRT. Total doses of 45 Gy (n = 10) or 60 Gy (n = 34) in 3 fractions were prescribed to the 95% isodose line covering 95% of the planning target volume. Rates of local control (LC), intrahepatic failure-free survival (IHFFS), distant metastasis-free survival (DMFS), and overall survival (OS) were calculated using the Kaplan-Meier method. RESULTS: Median follow-up was 29 months (range, 8 to 64 months). Rates at 1 and 3 years were 97.7% and 95.0% for LC, 97.7% and 80.7% for OS, 76% and 40.5% for IHFFS, and 87.3% and 79.5% for DMFS. Five patients (11.4%) experienced degradation of albumin-bilirubin grade, 2 (4.5%) degradation of Child-Pugh score, and 4 (9.1%) grade 3 or greater laboratory abnormalities within 3 months after SBRT. No significant difference was seen in any oncological outcomes or treatment-related toxicities between the two dose regimens. Conclusions: SBRT was highly effective for local control without severe toxicities in patients with HCC smaller than 3 cm. The regimen of a total dose of 45 Gy in 3 fractions was comparable to 60 Gy in efficacy and safety of SBRT for small HCC.

12.
PLoS One ; 13(3): e0193904, 2018.
Article in English | MEDLINE | ID: mdl-29505589

ABSTRACT

In particle radiotherapy, range uncertainty is an important issue that needs to be overcome. Because high-dose conformality can be achieved using a particle beam, a small uncertainty can affect tumor control or cause normal-tissue complications. From this perspective, the treatment planning system (TPS) must be accurate. However, there is a well-known inaccuracy regarding dose computation in heterogeneous media. This means that verifying the uncertainty level is one of the prerequisites for TPS commissioning. We evaluated the range accuracy of the dose computation algorithm implemented in a commercial TPS, and Monte Carlo (MC) simulation against measurement using a CT calibration phantom. A treatment plan was produced for eight different materials plugged into a phantom, and two-dimensional doses were measured using a chamber array. The measurement setup and beam delivery were simulated by MC code. For an infinite solid water phantom, the gamma passing rate between the measurement and TPS was 97.7%, and that between the measurement and MC was 96.5%. However, gamma passing rates between the measurement and TPS were 49.4% for the lung and 67.8% for bone, and between the measurement and MC were 85.6% for the lung and 100.0% for bone tissue. For adipose, breast, brain, liver, and bone mineral, the gamma passing rates computed by TPS were 91.7%, 90.6%, 81.7%, 85.6%, and 85.6%, respectively. The gamma passing rates for MC for adipose, breast, brain, liver, and bone mineral were 100.0%, 97.2%, 95.0%, 98.9%, and 97.8%, respectively. In conclusion, the described procedure successfully evaluated the allowable range uncertainty for TPS commissioning. The TPS dose calculation is inefficient in heterogeneous media with large differences in density, such as lung or bone tissue. Therefore, the limitations of TPS in heterogeneous media should be understood and applied in clinical practice.


Subject(s)
Antineoplastic Protocols/standards , Neoplasms/radiotherapy , Proton Therapy , Algorithms , Calibration , Humans , Monte Carlo Method , Phantoms, Imaging , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
13.
Radiat Oncol J ; 36(1): 25-34, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29580046

ABSTRACT

PURPOSE: This study aimed to evaluate the initial outcomes of proton beam therapy (PBT) for hepatocellular carcinoma (HCC) in terms of tumor response and safety. MATERIALS AND METHODS: HCC patients who were not indicated for standard curative local modalities and who were treated with PBT at Samsung Medical Center from January 2016 to February 2017 were enrolled. Toxicity was scored using the Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. Tumor response was evaluated using modified Response Evaluation Criteria in Solid Tumors (mRECIST). RESULTS: A total of 101 HCC patients treated with PBT were included. Patients were treated with an equivalent dose of 62-92 GyE10. Liver function status was not significantly affected after PBT. Greater than 80% of patients had Child-Pugh class A and albumin-bilirubin (ALBI) grade 1 up to 3-months after PBT. Of 78 patients followed for three months after PBT, infield complete and partial responses were achieved in 54 (69.2%) and 14 (17.9%) patients, respectively. CONCLUSION: PBT treatment of HCC patients showed a favorable infield complete response rate of 69.2% with acceptable acute toxicity. An additional follow-up study of these patients will be conducted.

14.
PLoS One ; 12(10): e0186544, 2017.
Article in English | MEDLINE | ID: mdl-29045491

ABSTRACT

Proton therapy is a rapidly progressing field for cancer treatment. Globally, many proton therapy facilities are being commissioned or under construction. Secondary neutrons are an important issue during the commissioning process of a proton therapy facility. The purpose of this study is to model and validate scanning nozzles of proton therapy at Samsung Medical Center (SMC) by Monte Carlo simulation for beam commissioning. After the commissioning, a secondary neutron ambient dose from proton scanning nozzle (Gantry 1) was simulated and measured. This simulation was performed to evaluate beam properties such as percent depth dose curve, Bragg peak, and distal fall-off, so that they could be verified with measured data. Using the validated beam nozzle, the secondary neutron ambient dose was simulated and then compared with the measured ambient dose from Gantry 1. We calculated secondary neutron dose at several different points. We demonstrated the validity modeling a proton scanning nozzle system to evaluate various parameters using FLUKA. The measured secondary neutron ambient dose showed a similar tendency with the simulation result. This work will increase the knowledge necessary for the development of radiation safety technology in medical particle accelerators.


Subject(s)
Computer Simulation , Monte Carlo Method , Neutrons , Proton Therapy , Radiotherapy Dosage , Dose-Response Relationship, Radiation , Protons , Reproducibility of Results
15.
Radiat Prot Dosimetry ; 177(4): 382-388, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28444374

ABSTRACT

The primary objective of this study was to measure secondary neutron dose during proton therapy using a detector that covers the entire neutron energy range produced in proton therapy. We analyzed and compared the neutron dose during proton treatment with passive scattering and line scanning. The neutron ambient dose equivalents were measured with a 190 MeV wobbling and line-scanning proton beam. The center of a plastic water phantom (30 × 30 × 60 cm3) was placed at the isocenter. A Wide-Energy Neutron Detection Instrument (WENDI-2) was located 1m from the isocenter at four different angles (0°, 45°, 90° and 135°). Both wobbling and line-scanning modes of a multipurpose and pencil beam scanning dedicated nozzles were used to obtain a spread-out Bragg peak with 10-cm-width for the measurements. The ambient dose equivalent H*(10) value was normalized by the proton therapeutic dose at the isocenter. For wobbling mode and line-scanning mode, the highest H*(10) values were 1.972 and 0.099 mSv/Gy, respectively. We successfully measured the neutron ambient dose equivalents at six positions generated by a 190 MeV proton beam using wobbling and line-scanning mode with the WENDI-2. These reference data could be used for neutron dose reduction methods and other analysis for advanced proton treatment in the near future.


Subject(s)
Proton Therapy/methods , Radiation Dosage , Radiometry/methods , Radiotherapy Dosage , Humans , Models, Anatomic , Neutrons , Republic of Korea , Scattering, Radiation
16.
Med Phys ; 42(2): 1071-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25652519

ABSTRACT

PURPOSE: A new automatic quality assurance (AutoRCQA) system using a three-dimensional scanner (3DS) with system automation was developed to improve the accuracy and efficiency of the quality assurance (QA) procedure for proton range compensators (RCs). The system performance was evaluated for clinical implementation. METHODS: The AutoRCQA system consists of a three-dimensional measurement system (3DMS) based on 3DS and in-house developed verification software (3DVS). To verify the geometrical accuracy, the planned RC data (PRC), calculated with the treatment planning system (TPS), were reconstructed and coregistered with the measured RC data (MRC) based on the beam isocenter. The PRC and MRC inner surfaces were compared with composite analysis (CA) using 3DVS, using the CA pass rate for quantitative analysis. To evaluate the detection accuracy of the system, the authors designed a fake PRC by artificially adding small cubic islands with side lengths of 1.5, 2.5, and 3.5 mm on the inner surface of the PRC and performed CA with the depth difference and distance-to-agreement tolerances of [1 mm, 1 mm], [2 mm, 2 mm], and [3 mm, 3 mm]. In addition, the authors performed clinical tests using seven RCs [computerized milling machine (CMM)-RCs] manufactured by CMM, which were designed for treating various disease sites. The systematic offsets of the seven CMM-RCs were evaluated through the automatic registration function of AutoRCQA. For comparison with conventional technique, the authors measured the thickness at three points in each of the seven CMM-RCs using a manual depth measurement device and calculated thickness difference based on the TPS data (TPS-manual measurement). These results were compared with data obtained from 3DVS. The geometrical accuracy of each CMM-RC inner surface was investigated using the TPS data by performing CA with the same criteria. The authors also measured the net processing time, including the scan and analysis time. RESULTS: The AutoRCQA system accurately detected all fake objects in accordance with the given criteria. The median systematic offset of the seven CMM-RCs was 0.08 mm (interquartile range: -0.25 to 0.37 mm) and -0.08 mm (-0.58 to 0.01 mm) in the X- and Y-directions, respectively, while the median distance difference was 0.37 mm (0.23-0.94 mm). The median thickness difference of the TPS-manual measurement at points 1, 2, and 3 was -0.4 mm (-0.4 to -0.2 mm), -0.2 mm (-0.3 to 0.0 mm), and -0.3 mm (-0.6 to -0.1 mm), respectively, while the median difference of 3DMS was 0.0 mm (-0.1 to 0.2 mm), 0.0 mm (-0.1 to 0.3 mm), and 0.1 mm (-0.1 to 0.2 mm), respectively. Thus, 3DMS showed slightly better values compared to the manual measurements for points 1 and 3 in statistical analysis (p < 0.05). The average pass rate of the seven CMM-RCs was 97.97% ± 1.68% for 1-mm CA conditions, increasing to 99.98% ± 0.03% and 100% ± 0.00% for 2- and 3-mm CA conditions, respectively. The average net analysis time was 18.01 ± 1.65 min. CONCLUSIONS: The authors have developed an automated 3DS-based proton RC QA system and verified its performance. The AutoRCQA system may improve the accuracy and efficiency of QA for RCs.


Subject(s)
Imaging, Three-Dimensional , Proton Therapy/methods , Automation , Humans , Male , Neoplasms/radiotherapy , Optical Imaging , Quality Control , Radiotherapy Planning, Computer-Assisted , Software
17.
Radiat Oncol J ; 33(4): 337-43, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26756034

ABSTRACT

PURPOSE: The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. MATERIALS AND METHODS: The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. RESULTS: The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. CONCLUSION: The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.

18.
Phys Med Biol ; 58(18): 6511-23, 2013 Sep 21.
Article in English | MEDLINE | ID: mdl-24002543

ABSTRACT

The aim of this work was to study the feasibility of proton radiography (pRad) as a patient-specific range compensator (RC) quality assurance (QA) tool and to validate its clinical utility by performing QA on RCs having three kinds of possible defects. In order to achieve pRad for a single EBT film, proton beam currents were modulated with new weighting factors, maximizing the linearity of optical-density-to-thickness ratio. Two RCs, examined to be accurately manufactured as planned, were selected to estimate the feasibility of our pRad. The optical densities of the EBT film on which the RC was irradiated with the modulated proton beam were digitized to pixel values (pv) and then converted to thickness using a thickness-pv calibration curve. The thickness information on the pRad was compared with plan data that had been extracted from treatment planning system. The mean thickness difference (TD) over the flat RC regions was calculated as 0.39 mm, and the standard deviation as 0.22 mm, and the proton scattering effect was analyzed by step phantom measurement. Even proton scattering effected a TD of over 1 mm in the large gradient region, the percentage of pixels over the acceptance criterion was only within 1.11% and 3.49%, respectively, when a 1 mm distance to agreement tolerance limit was applied. The QA results for both precisely and imprecisely manufactured RCs demonstrated the high potential utility and clinical applicability of the pRad-based RC QA tool.


Subject(s)
Proton Therapy , Radiography/methods , Algorithms , Calibration , Computer Simulation , Film Dosimetry/methods , Humans , Phantoms, Imaging , Quality Control , Radiography/instrumentation , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results , Scattering, Radiation
19.
Health Phys ; 100(5): 462-7, 2011 May.
Article in English | MEDLINE | ID: mdl-21451315

ABSTRACT

The two-dosimeter method, which employs one dosimeter on the chest and the other on the back, determines the effective dose with sufficient accuracy for complex or unknown irradiation geometries. The two-dosimeter method, with a suitable algorithm, neither significantly overestimates (in most cases) nor seriously underestimates the effective dose, not even for extreme exposure geometries. Recently, however, the definition of the effective dose itself was changed in ICRP Publication 103; that is, the organ and tissue configuration employed in calculations of effective dose, along with the related tissue weighting factors, was significantly modified. In the present study, therefore, a two-dosimeter algorithm was developed for the new ICRP 103 definition of effective dose. To that end, first, effective doses and personal dosimeter responses were calculated using the ICRP reference phantoms and the MCNPX code for many incident beam directions. Next, a systematic analysis of the calculated values was performed to determine an optimal algorithm. Finally, the developed algorithm was tested by applying it to beam irradiation geometries specifically selected as extreme exposure geometries, and the results were compared with those for the previous algorithm that had been developed for the effective dose given in ICRP Publication 60.


Subject(s)
Algorithms , Radiation Dosage , Radiation Protection , Radiometry
20.
Radiother Oncol ; 98(3): 335-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21339011

ABSTRACT

PURPOSE: To compare the secondary radiation doses following intensity-modulated radiotherapy (IMRT) and proton beam therapy (PBT) in patients with lung and liver cancer. METHODS AND MATERIALS: IMRT and PBT were planned for three lung cancer and three liver cancer patients. The treatment beams were delivered to phantoms and the corresponding secondary doses during irradiation were measured at various points 20-50 cm from the beam isocenter using ion chamber and CR-39 detectors for IMRT and PBT, respectively. RESULTS: The secondary dose per Gy (i.e., a treatment dose of 1Gy) from PBT for lung and liver cancer, measured 20-50 cm from the isocenter, ranged from 0.17 to 0.086 mGy. The secondary dose per Gy from IMRT, however, ranged between 5.8 and 1.0 mGy, indicating that PBT is associated with a smaller dose of secondary radiation than IMRT. The internal neutron dose per Gy from PBT for lung and liver cancer, 20-50 cm from the isocenter, ranged from 0.03 to 0.008 mGy. CONCLUSIONS: The secondary dose from PBT is less than or compatible to the secondary dose from conventional IMRT. The internal neutron dose generated by the interaction between protons and body material is generally much less than the external neutron dose from the treatment head.


Subject(s)
Liver Neoplasms/radiotherapy , Lung Neoplasms/radiotherapy , Protons , Radiotherapy, Intensity-Modulated , Humans , Neutrons , Radiation Injuries , Radiotherapy, Intensity-Modulated/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...