Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Mol Brain ; 17(1): 59, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192323

ABSTRACT

Individuals with low social status are at heightened risk of major depressive disorder (MDD), and MDD also influences social status. While the interrelationship between MDD and social status is well-defined, the behavioral causality between these two phenotypes remains unexplored. Here, we investigated the behavioral relationships between depressive and dominance behaviors in male mice exposed to chronic restraint stress and the role of medial prefrontal cortex (mPFC) astrocytes in these behaviors. Chronic restraint stress induced both depressive and submissive behaviors. Chemogenetic mPFC astrocyte activation significantly enhanced dominance in chronic stress-induced submissive mice by increasing the persistence of defensive behavior, although it did not affect depressive behaviors. Notably, repetitive winning experiences following mPFC astrocyte stimulation exerted anti-depressive effects in chronic restraint stress-induced depressive mice. These data indicate that mPFC astrocyte-derived winning experience renders anti-depressive effects, and may offer a new strategy for treating depression caused by low status in social hierarchies by targeting mPFC astrocytes.


Subject(s)
Astrocytes , Behavior, Animal , Depression , Mice, Inbred C57BL , Prefrontal Cortex , Stress, Psychological , Animals , Astrocytes/metabolism , Male , Stress, Psychological/complications , Prefrontal Cortex/physiopathology , Prefrontal Cortex/pathology , Depression/physiopathology , Social Dominance , Chronic Disease , Restraint, Physical , Mice
3.
Anat Cell Biol ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39155801

ABSTRACT

The infratemporal fossa and pterygopalatine fossa are critical pathways for blood vessels and nerves leading to the orbit, nasal cavity, and oral cavity. Anatomical observation of these areas is challenging for learners due to their complex connections with surrounding structures and their deep location within the body. Since it is not easy to understand this area in three dimensions with only textbook images, there is a need to produce three-dimensional (3D) content. Most existing 3D data have reconstructed the digital imaging and communication in medicine files from computed tomography images with high accuracy; however, the surrounding structures often obstruct the view. For this reason, this project utilized Cinema4D (R18; Maxon) software to refine the modeled bones and to create 3D models of muscles, blood vessels, and nerves that accurately represent their anatomical shapes and pathways. To facilitate easier access for learners via PC, the content was converted into PDF format. This enables the educational materials to be more easily viewed and the main structures more clearly observed using a computer-based viewer.

4.
Adv Mater ; 36(31): e2402040, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38798189

ABSTRACT

Topological quantum phases are largely understood in weakly correlated systems, which have identified various quantum phenomena, such as the spin Hall effect, protected transport of helical fermions, and topological superconductivity. Robust ferromagnetic order in correlated topological materials particularly attracts attention, as it can provide a versatile platform for novel quantum devices. Here, a singular Hall response arising from a unique band structure of flat topological nodal lines in combination with electron correlation in a van der Waals ferromagnetic semimetal, Fe3GaTe2, with a high Curie temperature of Tc = 347 K is reported. High anomalous Hall conductivity violating the conventional scaling, resistivity upturn at low temperature, and a large Sommerfeld coefficient are observed in Fe3GaTe2, which implies heavy fermion features in this ferromagnetic topological material. The scanning tunneling microscopy, circular dichroism in angle-resolved photoemission spectroscopy, and theoretical calculations support the original electronic features of the material. Thus, low-dimensional Fe3GaTe2 with electronic correlation, topology, and room-temperature ferromagnetic order appears to be a promising candidate for robust quantum devices.

6.
Chem Rev ; 123(19): 11230-11268, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37589590

ABSTRACT

Polymorphic 2D materials allow structural and electronic phase engineering, which can be used to realize energy-efficient, cost-effective, and scalable device applications. The phase engineering covers not only conventional structural and metal-insulator transitions but also magnetic states, strongly correlated band structures, and topological phases in rich 2D materials. The methods used for the local phase engineering of 2D materials include various optical, geometrical, and chemical processes as well as traditional thermodynamic approaches. In this Review, we survey the precise manipulation of local phases and phase patterning of 2D materials, particularly with ideal and versatile phase interfaces for electronic and energy device applications. Polymorphic 2D materials and diverse quantum materials with their layered, vertical, and lateral geometries are discussed with an emphasis on the role and use of their phase interfaces. Various phase interfaces have demonstrated superior and unique performance in electronic and energy devices. The phase patterning leads to novel homo- and heterojunction structures of 2D materials with low-dimensional phase boundaries, which highlights their potential for technological breakthroughs in future electronic, quantum, and energy devices. Accordingly, we encourage researchers to investigate and exploit phase patterning in emerging 2D materials.

7.
Nat Neurosci ; 26(9): 1541-1554, 2023 09.
Article in English | MEDLINE | ID: mdl-37563296

ABSTRACT

Social hierarchy is established as an outcome of individual social behaviors, such as dominance behavior during long-term interactions with others. Astrocytes are implicated in optimizing the balance between excitatory and inhibitory (E/I) neuronal activity, which may influence social behavior. However, the contribution of astrocytes in the prefrontal cortex to dominance behavior is unclear. Here we show that dorsomedial prefrontal cortical (dmPFC) astrocytes modulate E/I balance and dominance behavior in adult male mice using in vivo fiber photometry and two-photon microscopy. Optogenetic and chemogenetic activation or inhibition of dmPFC astrocytes show that astrocytes bidirectionally control male mouse dominance behavior, affecting social rank. Dominant and subordinate male mice present distinct prefrontal synaptic E/I balance, regulated by astrocyte activity. Mechanistically, we show that dmPFC astrocytes control cortical E/I balance by simultaneously enhancing presynaptic-excitatory and reducing postsynaptic-inhibitory transmission via astrocyte-derived glutamate and ATP release, respectively. Our findings show how dmPFC astrocyte-neuron communication can be involved in the establishment of social hierarchy in adult male mice.


Subject(s)
Astrocytes , Synapses , Mice , Animals , Male , Synapses/physiology , Astrocytes/physiology , Neurons/physiology , Prefrontal Cortex , Synaptic Transmission/physiology
8.
J Transl Med ; 21(1): 414, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365600

ABSTRACT

BACKGROUND: Enumeration of circulating tumor cells (CTCs) has proven clinical significance for monitoring patients with metastatic cancers. Multiplexed gene expression profiling of CTCs is a potential tool for assessing disease status and monitoring treatment response. The Parsortix® technology enables the capture and harvest of CTCs from blood based on cell size and deformability. The HyCEAD™ (Hybrid Capture Enrichment Amplification and Detection) assay enables simultaneous amplification of short amplicons for up to 100 mRNA targets, and the Ziplex™ instrument quantifies the amplicons for highly sensitive gene expression profiling down to single cell levels. The aim of the study was to functionally assess this system. METHODS: The HyCEAD/Ziplex platform was used to quantify the expression levels for 72 genes using as little as 20 pg of total RNA or a single cultured tumor cell. Assay performance was evaluated using cells or total RNA spiked into Parsortix harvests of healthy donor blood. The assay was also evaluated using total RNA obtained from Parsortix harvests of blood from metastatic breast cancer (MBC) patients or healthy volunteers (HVs). RESULTS: Using genes with low expression in WBC RNA and/or in unspiked Parsortix harvests from HVs, the assay distinguished between the different breast cancer and ovarian cancer cell lines with as little as 20 pg of total RNA (equivalent to a single cell) in the presence of 1 ng of WBC RNA. Single cultured cells spiked into Parsortix harvests from 10 mL of HV blood were also detected and distinguished from each other. CVs from repeatability experiments were less than 20%. Hierarchical clustering of clinical samples differentiated most MBC patients from HVs. CONCLUSION: HyCEAD/Ziplex provided sensitive quantification of expression of 72 genes from 20 pg of total RNA from cultured tumor cell lines or from single cultured tumor cells spiked into lysates from Parsortix harvests of HV blood. The HyCEAD/Ziplex platform enables the quantification of selected genes in the presence of residual nucleated blood cells in Parsortix harvests. The HyCEAD/Ziplex platform is an effective tool for multiplexed molecular characterization of mRNA in small numbers of tumor cells harvested from blood.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Humans , Female , Neoplastic Cells, Circulating/pathology , Breast Neoplasms/pathology , Gene Expression Profiling , RNA, Messenger/metabolism , RNA , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
9.
Nat Commun ; 13(1): 6536, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344520

ABSTRACT

Astrocytes can affect animal behavior by regulating tripartite synaptic transmission, yet their influence on affective behavior remains largely unclear. Here we showed that hippocampal astrocyte calcium activity reflects mouse affective state during virtual elevated plus maze test using two-photon calcium imaging in vivo. Furthermore, optogenetic hippocampal astrocyte activation elevating intracellular calcium induced anxiolytic behaviors in astrocyte-specific channelrhodopsin 2 (ChR2) transgenic mice (hGFAP-ChR2 mice). As underlying mechanisms, we found ATP released from the activated hippocampal astrocytes increased excitatory synaptic transmission in dentate gyrus (DG) granule cells, which exerted anxiolytic effects. Our data uncover a role of hippocampal astrocytes in modulating mice anxiety-like behaviors by regulating ATP-mediated synaptic homeostasis in hippocampal DG granule cells. Thus, manipulating hippocampal astrocytes activity can be a therapeutic strategy to treat anxiety.


Subject(s)
Astrocytes , Calcium , Animals , Mice , Astrocytes/metabolism , Calcium/metabolism , Hippocampus/metabolism , Channelrhodopsins/genetics , Mice, Transgenic , Adenosine Triphosphate/pharmacology , Anxiety
10.
Sci Rep ; 12(1): 5496, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361832

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is accompanied by chronic neurological sequelae such as cognitive decline and mood disorder, but the underlying mechanisms have not yet been elucidated. We explored the possibility that the brain-infiltrating SARS-CoV-2 spike protein contributes to the development of neurological symptoms observed in COVID-19 patients in this study. Our behavioral study showed that administration of SARS-CoV-2 spike protein S1 subunit (S1 protein) to mouse hippocampus induced cognitive deficit and anxiety-like behavior in vivo. These neurological symptoms were accompanied by neuronal cell death in the dorsal and ventral hippocampus as well as glial cell activation. Interestingly, the S1 protein did not directly induce hippocampal cell death in vitro. Rather, it exerted neurotoxicity via glial cell activation, partially through interleukin-1ß induction. In conclusion, our data suggest a novel pathogenic mechanism for the COVID-19-associated neurological symptoms that involves glia activation and non-cell autonomous hippocampal neuronal death by the brain-infiltrating S1 protein.


Subject(s)
COVID-19 , Cognitive Dysfunction , Animals , Antibodies, Viral/metabolism , Anxiety , Cell Death , Cognition , Cognitive Dysfunction/etiology , Hippocampus/metabolism , Humans , Membrane Glycoproteins/metabolism , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism
11.
Mol Med ; 26(1): 75, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32736525

ABSTRACT

BACKGROUND: Therapeutic lymphangiogenesis in an orthotopic lung transplant model has been shown to improve acute allograft rejection that is mediated at least in part through hyaluronan drainage. Lymphatic vessel endothelial hyaluronan receptor (LYVE-1) expressed on the surface of lymphatic endothelial cells plays important roles in hyaluronan uptake. The impact of current immunosuppressive therapies on lung lymphatic endothelial cells is largely unknown. We tested the hypothesis that FK506, the most commonly used immunosuppressant after lung transplantation, induces lung lymphatic endothelial cell dysfunction. METHODS: Lung lymphatic endothelial cells were cultured in vitro and treated with FK506. Telomerase activity was measured using the TRAP assay. Protein expression of LYVE-1 and senescence markers p21 and ß-galactosidase was assessed with western blotting. Matrigel tubulation assay were used to investigate the effects of FK506 on TNF-α-induced lymphangiogenesis. Dual luciferase reporter assay was used to confirm NFAT-dependent transcriptional regulation of LYVE-1. Flow cytometry was used to examine the effects of FK506 on LYVE-1 in precision-cut-lung-slices ex vivo and on hyaluronan uptake in vitro. RESULTS: In vitro, FK506 downregulated telomerase reverse transcriptase expression, resulting in decreased telomerase activity and subsequent induction of p21 expression and cell senescence. Treatment with FK506 decreased LYVE-1 mRNA and protein levels and resulted in decreased LEC HA uptake. Similar result showing reduction of LYVE-1 expression when treated with FK506 was observed ex vivo. We identified a putative NFAT binding site on the LYVE-1 promoter and cloned this region of the promoter in a luciferase-based reporter construct. We showed that this NFAT binding site regulates LYVE-1 transcription, and mutation of this binding site blunted FK506-dependent downregulation of LYVE-1 promoter-dependent transcription. Finally, FK506-treated lymphatic endothelial cells show a blunted response to TNF-α-mediated lymphangiogenesis. CONCLUSION: FK506 alters lymphatic endothelial cell molecular characteristics and causes lymphatic endothelial cell dysfunction in vitro and ex vivo. These effects of FK506 on lymphatic endothelial cell may impair the ability of the transplanted lung to drain hyaluronan macromolecules in vivo. The implications of our findings on the long-term health of lung allografts merit more investigation.


Subject(s)
Cellular Senescence/drug effects , Cellular Senescence/genetics , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Gene Expression Regulation/drug effects , Hyaluronic Acid/metabolism , Tacrolimus/pharmacology , Vesicular Transport Proteins/genetics , Animals , Biological Transport , Cells, Cultured , Humans , Lymphangiogenesis/drug effects , Lymphangiogenesis/genetics , Mice , NFATC Transcription Factors/metabolism , Protein Binding , Telomerase/genetics , Telomerase/metabolism , Vesicular Transport Proteins/metabolism
12.
J Biol Chem ; 294(46): 17487-17500, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31586032

ABSTRACT

The DNA-binding protein PU.1 is a myeloid lineage-determining and pioneering transcription factor due to its ability to bind "closed" genomic sites and maintain "open" chromatin state for myeloid lineage-specific genes. The precise mechanism of PU.1 in cell type-specific programming is yet to be elucidated. The melanoma cell line B16BL6, although it is nonmyeloid lineage, expressed Toll-like receptors and activated the transcription factor NF-κB upon stimulation by the bacterial cell wall component lipopolysaccharide. However, it did not produce cytokines, such as IL-1ß mRNA. Ectopic PU.1 expression induced remodeling of a novel distal enhancer (located ∼10 kbp upstream of the IL-1ß transcription start site), marked by nucleosome depletion, enhancer-promoter looping, and histone H3 lysine 27 acetylation (H3K27ac). PU.1 induced enhancer-promoter looping and H3K27ac through two distinct PU.1 regions. These PU.1-dependent events were independently required for subsequent signal-dependent and co-dependent events: NF-κB recruitment and further H3K27ac, both of which were required for enhancer RNA (eRNA) transcription. In murine macrophage RAW264.7 cells, these PU.1-dependent events were constitutively established and readily expressed eRNA and subsequently IL-1ß mRNA by lipopolysaccharide stimulation. In summary, this study showed a sequence of epigenetic events in programming IL-1ß transcription by the distal enhancer priming and eRNA production mediated by PU.1 and the signal-dependent transcription factor NF-κB.


Subject(s)
Interleukin-1beta/genetics , Melanoma, Experimental/genetics , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , Trans-Activators/genetics , Animals , Cell Line, Tumor , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Mice , Promoter Regions, Genetic , RAW 264.7 Cells , Transcriptional Activation
13.
PLoS One ; 14(4): e0213831, 2019.
Article in English | MEDLINE | ID: mdl-30964887

ABSTRACT

Lymphatic vessels play an important role in health and in disease. In this study, we evaluated the effects of GSK3-ß inhibition on lung lymphatic endothelial cells in vitro. Pharmacological inhibition and silencing of GSK3-ß resulted in increased lymphangiogenesis of lung lymphatic endothelial cells. To investigate mechanisms of GSK3-ß-mediated lymphangiogenesis, we interrogated the mammalian/mechanistic target of rapamycin pathway and found that inhibition of GSK3-ß resulted in PTEN activation and subsequent decreased activation of AKT, leading to decreased p-P70S6kinase levels, indicating inhibition of the mTOR pathway. In addition, consistent with a negative role of GSK3-ß in ß-catenin stability through protein phosphorylation, we found that GSK3-ß inhibition resulted in an increase in ß-catenin levels. Simultaneous silencing of ß-catenin and inhibition of GSK3-ß demonstrated that ß-catenin is required for GSK3-ß-induced lymphangiogenesis.


Subject(s)
Lymphangiogenesis/physiology , beta Catenin/metabolism , Cell Culture Techniques , Cell Line , Endothelial Cells/physiology , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/genetics , Humans , Indoles/pharmacology , Lung/cytology , Lymphangiogenesis/drug effects , Lymphatic Vessels/cytology , Maleimides/pharmacology , Microvessels/cytology , Phosphorylation , Protein Stability , RNA, Small Interfering/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism , beta Catenin/genetics
14.
Front Neurosci ; 13: 213, 2019.
Article in English | MEDLINE | ID: mdl-30949019

ABSTRACT

A growing body of evidence from both clinical and animal studies indicates that chronic neuropathic pain is associated with comorbid affective disorders. Spinal cord microglial activation is involved in nerve injury-induced pain hypersensitivity characterizing neuropathic pain. However, there is a lack of thorough assessments of microglial activation in the brain after nerve injury. In the present study, we characterized microglial activation in brain sub-regions of CX3CR1GFP/+ mice after chronic constriction injury (CCI) of the sciatic nerve, including observations at delayed time points when affective brain dysfunctions such as depressive-like behaviors typically develop. Mice manifested chronic mechanical hypersensitivity immediately after CCI and developed depressive-like behaviors 8 weeks post-injury. Concurrently, significant increases of soma size and microglial cell number were observed in the medial prefrontal cortex (mPFC), hippocampus, and amygdala 8 weeks post-injury. Transcripts of CD11b, and TNF-α, genes associated with microglial activation or depressive-like behaviors, are correspondingly upregulated in these brain areas. Our results demonstrate that microglia are activated in specific brain sub-regions after CCI at delayed time points and imply that brain microglial activation plays a role in chronic pain-associated affective disorders.

15.
Front Behav Neurosci ; 13: 11, 2019.
Article in English | MEDLINE | ID: mdl-30760989

ABSTRACT

The participation of the prefrontal cortex (PFC), hippocampus, and dorsal striatum in switching the learning task from cued to place learning were examined in C57BL/6 and DBA/2 mice, by assessing changed levels of phosphorylated CREB (pCREB). Mice of both strains first received cued training in a water maze for 4 days (4 trials per day), and were then assigned to one of four groups, one with no place training, and three with different durations of place training (2, 4, or 8 days). Both strains showed equal performance in cued training. After the switch to place training, C57BL/6 mice with 2 or 4 days of training performed significantly better than DBA/2 mice, but their superiority disappeared during the second half of an 8 days-place training period. The pCREB levels of these mice were measured 30 min after place training and compared with those of mice that received only cued training. Changes in pCREB levels of C57BL/6 mice were greater in the hippocampal CA3, hippocampal dentate gyrus, orbitofrontal and medial PFC than those of DBA/2 mice, when mice of both received the switched place training for 2 days. We further investigated the roles of orbitofrontal and medial PFC among these brain regions showing strain differences, by destroying each region using selective neurotoxins. C57BL/6 mice with orbitofrontal lesions were slower to acquire the place learning and continued to use the cued search acquired during the cued training phase. These findings indicate that mouse orbitofrontal cortex (OFC) pCREB is associated with behavioral flexibility such as the ability to switch a learning task.

16.
Mol Pain ; 14: 1744806918812636, 2018.
Article in English | MEDLINE | ID: mdl-30355052

ABSTRACT

BACKGROUND: We have previously reported that histamine-induced pruritus was attenuated in toll-like receptor 4 (TLR4) knockout mice due to decreased transient receptor potential V1 (TRPV1) sensitivity. Our results implied that TLR4 potentiated TRPV1 activation in sensory neurons; however, the molecular mechanism has yet to be elucidated. In this study, we investigated the molecular mechanisms of TLR4-mediated TRPV1 potentiation using TLR4-deficient sensory neurons and a heterologous expression system. METHODS: Primary sensory neurons were obtained from wild-type or TLR4 knockout mice, and HEK293T cells expressing TRPV1 and TLR4 were prepared by transient transfection. TRPV1 activity was analyzed by calcium imaging, fluorophotometry, and patch-clamp recording. Subcellular protein distribution was tested by immunocytochemistry and cell surface biotinylation assay. Protein interaction was assessed by western blot and immunoprecipitation assay. RESULTS: Direct association between TRPV1 and TLR4 was detected in HEK293T cells upon heterologous TRPV1 and TLR4 expression. In an immunoprecipitation assay using TLR4-deletion mutants and soluble toll/interleukin-1 receptor (TIR) protein, the cytoplasmic TIR domain of TLR4 was required for TLR4-TRPV1 association and TRPV1 potentiation. In TLR4-deficient sensory neurons, the activation-induced desensitization of TRPV1 increased, accompanied by enhanced TRPV1 clearance from the cell membrane upon activation compared to wild-type neurons. In addition, heterologous TLR4 expression inhibited activation-induced TRPV1 endocytosis and lysosomal degradation in HEK293T cells. CONCLUSION: Our data show that direct association between TRPV1 and TLR4 through the TIR domain enhances TRPV1 activity by blocking activation-induced TRPV1 desensitization.


Subject(s)
Sensory Receptor Cells/metabolism , TRPV Cation Channels/metabolism , Toll-Like Receptor 4/metabolism , Animals , Calcium/metabolism , HEK293 Cells , Humans , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Signal Transduction/genetics , TRPV Cation Channels/genetics , Toll-Like Receptor 4/genetics
17.
Mol Neurobiol ; 55(5): 3976-3989, 2018 May.
Article in English | MEDLINE | ID: mdl-28551869

ABSTRACT

Studies have shown that the removal of the cholinergic innervation to the hippocampus induces dysfunction of the hypothalamic-pituitary-adrenocortical axis and decreases the number of glucocorticoid receptors (GRs). Subsequent studies have revealed that the loss of cholinergic input to the hippocampus reduces the expression of GRs and activates nuclear factor-kappa B (NF-κB) signaling through interactions with the cytoplasmic catalytic subunit of protein kinase A (PKAc). We examined the effects of chronic stress on cognitive status and GR-PKAc-NF-κB signaling in rats with a loss of cholinergic input to the hippocampus and cortex. Male Sprague-Dawley rats received 192 IgG-saporin injections to selectively eliminate cholinergic neurons in their basal forebrain. Two weeks later, rats were subjected to 1 h of restraint stress per day for 14 days. Rats subjected to both chronic stress and cholinergic depletion showed more severe memory impairments compared to those that received either treatment alone. The reduction in nuclear GR levels induced by cholinergic depletion was unaffected by chronic stress. The activation of NF-κB signaling in the hippocampus and the cerebral cortex induced by cholinergic depletion was augmented by chronic stress, resulting in the increased expression of pro-inflammatory markers, such as inducible nitric oxide synthase and cyclooxygenase-2. The activation of NF-κB induced by cholinergic depletion appears to be aggravated by chronic stress, and this might explain the increased susceptibility of patients with Alzheimer's disease to stress since activation of NF-κB is associated with stress.


Subject(s)
Cerebral Cortex/metabolism , Cholinergic Neurons/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Hippocampus/metabolism , NF-kappa B/metabolism , Receptors, Glucocorticoid/metabolism , Spatial Learning , Stress, Psychological/physiopathology , Animals , Body Weight , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Choline O-Acetyltransferase/metabolism , Corticosterone/metabolism , Cyclooxygenase 2/metabolism , Hippocampus/pathology , Hippocampus/physiopathology , Male , Memory , Nitric Oxide Synthase Type II/metabolism , Phosphorylation , Phosphothreonine/metabolism , Rats, Sprague-Dawley , Reproducibility of Results , Signal Transduction , Stress, Psychological/metabolism , Stress, Psychological/pathology
18.
Toxins (Basel) ; 9(5)2017 05 16.
Article in English | MEDLINE | ID: mdl-28509866

ABSTRACT

Anthrax lethal toxin (LeTx) is a cytotoxic virulence factor that causes cell cycle arrest and cell death in various cell types. However, susceptibility to the cytotoxic effects varies depending on cell types. In proliferating monocytes, LeTx has only transient cytotoxic effects due to activation of the phosphoinositide 3-kinase (PI3K)-AKT-mediated adaptive responses. To date, the mechanism of LeTx in activating PI3K-AKT signaling axis is unknown. This study shows that the histone deacetylase 8 (HDAC8) is involved in activating PI3K-AKT signaling axis through down-regulating the phosphatase and tensin homolog 1 (PTEN) in human monocytic THP-1 cells. The HDAC8-specific activator TM-2-51 and inhibitor PCI-34051 enhanced and prevented, respectively, AKT activation and cell cycle progression in LeTx-treated cells. Furthermore, HDAC8 induced tri-methylation of histone H3 lysine 27 (H3K27me3), which is known to suppress PTEN expression, through at least in part down-regulating the H3K27me3 eraser Jumonji Domain Containing (JMJD) 3. Importantly, the JMJD3-specific inhibitor GSK-J4 induced AKT activation and protected cell cycle arrest in LeTx-treated cells, regardless the presence of HDAC8 activity. Collectively, this study for the first time demonstrated that HDAC8 activity determines susceptibility to cell cycle arrest induced by LeTx, through regulating the PI3K-PTEN-AKT signaling axis.


Subject(s)
Antigens, Bacterial/toxicity , Bacterial Toxins/toxicity , Cell Cycle Checkpoints/drug effects , Histone Deacetylases/metabolism , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Repressor Proteins/metabolism , Cell Survival , Gene Silencing , Histones/metabolism , Humans , Monocytes/drug effects , Monocytes/metabolism , Signal Transduction , THP-1 Cells
19.
Korean J Crit Care Med ; 32(3): 231-239, 2017 Aug.
Article in English | MEDLINE | ID: mdl-31723641

ABSTRACT

BACKGROUND: Early recognition of the signs and symptoms of clinical deterioration could diminish the incidence of cardiopulmonary arrest. The present study investigates outcomes with respect to cardiopulmonary arrest rates in institutions with and without rapid response systems (RRSs) and the current level of cardiopulmonary arrest rate in tertiary hospitals. METHODS: This was a retrospective study based on data from 14 tertiary hospitals. Cardiopulmonary resuscitation (CPR) rate reports were obtained from each hospital to include the number of cardiopulmonary arrest events in adult patients in the general ward, the annual adult admission statistics, and the structure of the RRS if present. RESULTS: Hospitals with RRSs showed a statistically significant reduction of the CPR rate between 2013 and 2015 (odds ratio [OR], 0.731; 95% confidence interval [CI], 0.577 to 0.927; P = 0.009). Nevertheless, CPR rates of 2013 and 2015 did not change in hospitals without RRS (OR, 0.988; 95% CI, 0.868 to 1.124; P = 0.854). National university-affiliated hospitals showed less cardiopulmonary arrest rate than private university-affiliated in 2015 (1.92 vs. 2.40; OR, 0.800; 95% CI, 0.702 to 0.912; P = 0.001). High-volume hospitals showed lower cardiopulmonary arrest rates compared with medium-volume hospitals in 2013 (1.76 vs. 2.63; OR, 0.667; 95% CI, 0.577 to 0.772; P < 0.001) and in 2015 (1.55 vs. 3.20; OR, 0.485; 95% CI, 0.428 to 0.550; P < 0.001). CONCLUSIONS: RRSs may be a feasible option to reduce the CPR rate. The discrepancy in cardiopulmonary arrest rates suggests further research should include a nationwide survey to tease out factors involved in in-hospital cardiopulmonary arrest and differences in outcomes based on hospital characteristics.

20.
Front Behav Neurosci ; 10: 176, 2016.
Article in English | MEDLINE | ID: mdl-27695401

ABSTRACT

Flexibility in using different learning strategies was assessed in two different inbred strains of mice, the C57BL/6 and DBA/2 strains. Mice were trained sequentially in two different Morris water maze protocols that tested their ability to switch their learning strategy to complete a new task after first being trained in a different task. Training consisted either of visible platform trials (cued training) followed by subsequent hidden platform trials (place training) or the reverse sequence (place training followed by cued training). Both strains of mice showed equivalent performance in the type of training (cued or place) that they received first. However, C57BL/6 mice showed significantly better performances than DBA/2 mice following the switch in training protocols, irrespective of the order of training. After completion of the switched training session, levels of cAMP response element-binding protein (CREB) and phosphorylated CREB (pCREB) were measured in the hippocampus, striatum and prefrontal cortex of the mice. Prefrontal cortical and hippocampal pCREB levels differed by strain, with higher levels found in C57BL/6 mice than in DBA/2 mice. No strain differences were observed in the medial or lateral region of the dorsal striatum. These findings indicate that the engagement (i.e., CREB signaling) of relevant neural structures may vary by the specific demands of the learning strategy, and this is closely tied to differences in the flexibility of C57BL/6 and DBA/2 mice to switch their learning strategies when given a new task.

SELECTION OF CITATIONS
SEARCH DETAIL