Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
iScience ; 25(10): 105199, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36248739

ABSTRACT

Buckling is a loss of structural stability. It occurs in long slender structures or thin plate structures which is subjected to compressive forces. For the structural materials, such a sudden change in shape has been considered to be avoided. In this study, we utilize the Au nanowire's buckling instability for the electrical measurement. We confirmed that the high-strength single crystalline Au nanowire with an aspect ratio of 150 and 230-nm-diameter shows classical Euler buckling under constant compressive force without failure. The buckling instability enables stable contact between the Au nanowire and the substrate without any damage. Clearly, the in situ electrical measurement shows a transition of the contact resistance between the nanowire and the substrate from the Sharvin (ballistic limit) mode to the Holm (Ohmic) mode during deformation, enabling reliable electrical measurements. This study suggests Au nanowire probes exhibiting structural instability to ensure stable and precise electrical measurements at the nanoscale.

2.
Soft Matter ; 13(5): 956-962, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28078333

ABSTRACT

Thin films that exhibit spatially heterogeneous swelling often buckle into the third dimension to minimize stress. These effects, in turn, offer a promising strategy to fabricate complex three-dimensional structures from two-dimensional sheets. Here we employ surface topography as a new means to guide buckling of swollen polymer bilayer films and thereby control the morphology of resulting three-dimensional objects. Topographic patterns are created on poly(dimethylsiloxane) (PDMS) films selectively coated with a thin layer of non-swelling parylene on different sides of the patterned films. After swelling in an organic solvent, various structures are formed, including half-pipes, helical tubules, and ribbons. We demonstrate these effects and introduce a simple geometric model that qualitatively captures the relationship between surface topography and the resulting swollen film morphologies. The model's limitations are also examined.

3.
Adv Mater ; 27(47): 7788-93, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26488215

ABSTRACT

Tapered nanopillar structures of different cross-sectional geometries including cone-, pencil-like, and stepwise are prepared from anodized aluminum oxide templates. The shape effect on the adhesion strength is investigated in experiments and simulation. Cone-shaped nanopillars are highly bendable under load and can recover after unloading, thus, warranting high adhesion strength, 34 N cm(-2) . The pencil-like and stepwise nano-pillars are, however, easily fractured and are not recoverable under the same conditions.

4.
Proc Natl Acad Sci U S A ; 112(24): 7449-53, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26015582

ABSTRACT

We use a regular arrangement of kirigami elements to demonstrate an inverse design paradigm for folding a flat surface into complex target configurations. We first present a scheme using arrays of disclination defect pairs on the dual to the honeycomb lattice; by arranging these defect pairs properly with respect to each other and choosing an appropriate fold pattern a target stepped surface can be designed. We then present a more general method that specifies a fixed lattice of kirigami cuts to be performed on a flat sheet. This single pluripotent lattice of cuts permits a wide variety of target surfaces to be programmed into the sheet by varying the folding directions.

5.
Adv Mater ; 27(17): 2747-52, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25808041

ABSTRACT

By prescribing asymmetric ligaments with different arrangements in elastomeric porous membranes of pre-twisted kagome lattices, the buckling instability is avoided, allowing for smooth and homogenous structural reconfiguration in a deterministic fashion. The stress-strain behaviors and negative Poisson's ratios can be tuned by the pre-twisting angles.


Subject(s)
Models, Molecular , Elasticity , Porosity , Stress, Mechanical
6.
Adv Mater ; 27(15): 2489-95, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25732127

ABSTRACT

A smart window is fabricated from a composite consisting of elastomeric poly(dimethylsiloxane) embedded with a thin layer of quasi-amorphous silica nanoparticles. The smart window can be switched from the initial highly transparent state to opaqueness and displays angle-independent structural color via mechanical stretching. The switchable optical property can be fully recovered after 1000 stretching/releasing cycles.

7.
Phys Rev Lett ; 113(24): 245502, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25541778

ABSTRACT

In this Letter we explore and develop a simple set of rules that apply to cutting, pasting, and folding honeycomb lattices. We consider origami-like structures that are extrinsically flat away from zero-dimensional sources of Gaussian curvature and one-dimensional sources of mean curvature, and our cutting and pasting rules maintain the intrinsic bond lengths on both the lattice and its dual lattice. We find that a small set of rules is allowed providing a framework for exploring and building kirigami­folding, cutting, and pasting the edges of paper.

8.
Proc Natl Acad Sci U S A ; 111(49): 17390-5, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25422433

ABSTRACT

In this paper we discuss the transformation of a sheet of material into a wide range of desired shapes and patterns by introducing a set of simple cuts in a multilevel hierarchy with different motifs. Each choice of hierarchical cut motif and cut level allows the material to expand into a unique structure with a unique set of properties. We can reverse-engineer the desired expanded geometries to find the requisite cut pattern to produce it without changing the physical properties of the initial material. The concept was experimentally realized and applied to create an electrode that expands to >800% the original area with only very minor stretching of the underlying material. The generality of our approach greatly expands the design space for materials so that they can be tuned for diverse applications.

9.
Adv Mater ; 26(24): 4127-33, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24710742

ABSTRACT

We demonstrate the design and fabrication of tilted micropillar arrays on wrinkled elastomeric poly(dimethylsiloxane) as a reversibly switchable optical window. Upon re-stretching the as-prepared (opaque) film to the original pre-strain, the grating color is restored and ∼ 30% transmittance is recovered. Further stretching beyond the pre-strain makes the film more transparent. This process is fully reversible and repeatable for many cycles.

10.
Sci Rep ; 3: 3201, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24220259

ABSTRACT

Light-emitting diodes (LEDs) become an attractive alternative to conventional light sources due to high efficiency and long lifetime. However, different material properties between GaN and sapphire cause several problems such as high defect density in GaN, serious wafer bowing, particularly in large-area wafers, and poor light extraction of GaN-based LEDs. Here, we suggest a new growth strategy for high efficiency LEDs by incorporating silica hollow nanospheres (S-HNS). In this strategy, S-HNSs were introduced as a monolayer on a sapphire substrate and the subsequent growth of GaN by metalorganic chemical vapor deposition results in improved crystal quality due to nano-scale lateral epitaxial overgrowth. Moreover, well-defined voids embedded at the GaN/sapphire interface help scatter lights effectively for improved light extraction, and reduce wafer bowing due to partial alleviation of compressive stress in GaN. The incorporation of S-HNS into LEDs is thus quite advantageous in achieving high efficiency LEDs for solid-state lighting.

11.
Small ; 9(13): 2255-9, 2013 Jul 08.
Article in English | MEDLINE | ID: mdl-23401192

ABSTRACT

Highly localized dislocations in GaN/ZnO hetero-nanostructures are generated from the residual strain field by lattice mismatches at two interfaces: between the substrate and hetero-nanostructures, and between the ZnO core and GaN shell. The local strain field is measured using tranmission electron microscopy, and the relationship between the nanostructure morphology and the highly localized dislocations is analyzed by a finite element method.

12.
Small ; 8(21): 3300-6, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-22821891

ABSTRACT

Design and fabrication of reliable electrodes is one of the most important challenges in flexible devices, which undergo repeated deformation. In conventional approaches, mechanical and electrical properties of continuous metal films degrade gradually because of the fatigue damage. The designed incorporation of nanoholes into Cu electrodes can enhance the reliability. In this study, the electrode shows extremely low electrical resistance change during bending fatigue because the nanoholes suppress crack initiation by preventing protrusion formation and damage propagation by crack tip blunting. This concept provides a key guideline for developing fatigue-free flexible electrodes.

13.
PLoS One ; 7(4): e35987, 2012.
Article in English | MEDLINE | ID: mdl-22558295

ABSTRACT

An implicit finite element model was developed to analyze the deformation behavior of low carbon steel during phase transformation. The finite element model was coupled hierarchically with a phase field model that could simulate the kinetics and micro-structural evolution during the austenite-to-ferrite transformation of low carbon steel. Thermo-elastic-plastic constitutive equations for each phase were adopted to confirm the transformation plasticity due to the weaker phase yielding that was proposed by Greenwood and Johnson. From the simulations under various possible plastic properties of each phase, a more quantitative understanding of the origin of transformation plasticity was attempted by a comparison with the experimental observation.


Subject(s)
Finite Element Analysis , Models, Chemical , Phase Transition , Steel/chemistry , Computer Simulation , Dental Alloys/chemistry , Elastic Modulus , Ferric Compounds/chemistry , Stress, Mechanical , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...