Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(2): e24257, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293378

ABSTRACT

Several studies have been conducted to improve combat vehicle capabilities, such as the bulletproof performance of armor and fuel efficiency through weight reduction. Titanium alloys and ceramic materials are expensive and difficult to process; therefore, they can be applied only in specific locations. In addition, arc welding, which is relatively inexpensive compared with other welding processes, is widely used in industrial fields; however, because welding is often performed in multiple passes to join one part, the productivity is reduced. Therefore, in this study, mechanical properties were investigated according to production time and heat input by applying tandem pulse gas metal arc welding (GMAW) to increase productivity. The experimental data were obtained by varying the wire feeding speed. In addition, the current-voltage waveforms were measured, and the volume shift was analyzed by comparison with images captured using a high-speed camera. To analyze the mechanical properties of the tandem weld for the welding of high-hardness armor plates, the appearance (top bead and back bead), cross-section, hardness, tensile test, impact test, and spatter generation of the welded part were analyzed. The results show that all Tank-automotive and Armaments Command (TACOM) standards for the base material were met when the tandem wire feeding speed was 11 + 11 m/min, and the single-pass process increased production speed by a factor of more than 10. Tandem pulse GMAW is shown to be a viable option for improving productivity and maintaining high-quality welds for high-hardness materials.

2.
Materials (Basel) ; 16(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38068207

ABSTRACT

In underwater laser beam machining (ULBM), water provides a cooling effect by reducing the influence of the laser heat source, which makes ULBM more suitable for marking, cutting, and postprocessing than laser beam machining (LBM). Because the laser heat source not only affects the substrate temperature, but also heats the water, this study analyzes how the cooling effect occurs when water is heated. In this study, the heat-transformed zones in ULBM and heated underwater laser beam machining (HULBM) were improved by approximately 33% and 24%, respectively, compared to LBM at 400 W. In addition, the heat-affected zones in ULBM and HULBM improved by approximately 15% and 9%, respectively, compared to LBM. The hardness of ULBM and HULBM was higher than that of LBM. Based on these results, it was confirmed that water can reduce the effect of the laser heat source and improve the mechanical properties. Experiments will be conducted on the underwater laser beam machining of various substrates, such as Inconel718 and Ti-6Al-4V, in a future study. In addition, experiments will be conducted on the underwater laser beam machining of various substrates using a cooling system that can lower the temperature of water.

3.
Nat Commun ; 14(1): 2202, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072425

ABSTRACT

The main challenge in preparing a flexible mold stamp using roll-to-roll nanoimprint lithography is to simultaneously increase the imprintable area with a minimized perceptible seam. However, the current methods for stitching multiple small molds to fabricate large-area molds and functional surfaces typically rely on the alignment mark, which inevitably produces a clear alignment mark and stitched seam. In this study, we propose a mark-less alignment by the pattern itself method inspired by moiré technique, which uses the Fourier spectral analysis of moiré patterns formed by superposed identical patterns for alignment. This method is capable of fabricating scalable functional surfaces and imprint molds with quasi-seamless and alignment mark-free patterning. By harnessing the rotational invariance property in the Fourier transform, our approach is confirmed to be a simple and efficient method for extracting the rotational and translational offsets in overlapped periodic or nonperiodic patterns with a minimized stitched region, thereby allowing for the large-area and quasi-seamless fabrication of imprinting molds and functional surfaces, such as liquid-repellent film and micro-optical sheets, that surpass the conventional alignment and stitching limits and potentially expand their application in producing large-area metasurfaces.

4.
Adv Sci (Weinh) ; 10(6): e2205085, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36526589

ABSTRACT

In metal additive manufacturing (AM), arc plasma is attracting attention as an alternative heat source to expensive lasers to enable the use of various metal wire materials with a high deposition efficiency. However, the stepwise material deposition and resulting limited number of degrees of freedom limit their potential for high-throughput and large-scale production for industrial applications. Herein, a high-throughput metal 3D printing pen (M3DPen) strategy is proposed based on an arc plasma heat source by harnessing the surface tension of the molten metal for enabling continuous material deposition without a downward flow by gravity. The proposed approach differs from conventional arc-based metal AM in that it controls the solidification and cooling time between interlayers of a point-by-point deposition path, thereby allowing for continuous metal 3D printing of freestanding and overhanging structures at once. The resulting mechanical properties and unique microstructures by continuous metal deposition that occur due to the difference in the thermal conditions of the molten metal under cooling are also investigated. This technology can be applied to a wide range of alloy systems and industrial manufacturing, thereby providing new possibilities for metal 3D printing.

5.
Sci Rep ; 12(1): 18637, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329178

ABSTRACT

Tandem welding is extensively used for welding large structures, such as ships and plants, for increased welding speed and volume. Seam tracking is essential because of a large amount of thermal deformation. However, in tandem welding, arc interference causes current and voltage to vary non-uniformly, leading to difficulties in seam tracking. Therefore, in this study, an optimal signal was identified for seam tracking in tandem welding and evaluated. To select the seam-tracking signal, an algorithm was developed that separates the welding signal into peak, average, and base. Based on the collected data, regression and signal-to-noise ratio analyses were performed to identify a suitable seam-tracking signal. To trace the welding line based on the selected signal, the welding signal was checked by weaving on the V-groove specimen. As a result, the current area difference of the welding signal generated between the left and right parts of the center of the V-groove could be calculated. An algorithm and equipment for seam tracking were constructed using the area difference of the welding current. Finally, the seam tracking system was verified by conducting an actual test using the equipment to which the algorithm was applied.


Subject(s)
Welding , Occupations
6.
Sci Rep ; 12(1): 5607, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379896

ABSTRACT

Biological surfaces in plants are critical for controlling essential functions such as wettability, adhesion, and light management, which are linked to their adaptation, survival, and reproduction. Biomimetically patterned surfaces replicating the microstructures of plant surfaces have become an emerging tool for understanding plant-environment interactions. In this study, we developed a two-step micro-replication platform to mimic the microstructure of seed surfaces and demonstrated that this initial platform can be used to study seed surface-environment interactions. The two-step process involved the extraction of a simplified seed surface model from real seeds and micro-replication of the simplified seed surface model using nanoimprint lithography. Using Allium seeds collected from Mongolia and Central Asia as the model system, we studied the wettability of biological and synthetic seed surfaces. We could independently control the material properties of a synthetic seed surface while maintaining the microstructures and, thereby, provide clear evidence that Allium seed surfaces were highly wettable owing to the high surface energy in the epidermal material rather than a microstructural effect. We expect that this platform can facilitate study of the independent effect of microstructure on the interaction of seed surfaces with their surroundings and contribute to research on the evolution of plant-environment interactions.


Subject(s)
Seeds , Mongolia , Wettability
7.
Sci Adv ; 7(38): eabh1200, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34533994

ABSTRACT

The limitation of projection microstereolithography in additive manufacturing methods is that they typically use a single-aperture imaging configuration, which restricts their ability to produce microstructures in large volumes owing to the trade-off between image resolution and image field area. Here, we propose an integral lithography based on integral image reconstruction coupled with a planar lens array. The individual microlenses maintain a high numerical aperture and are used to create digital light patterns that can expand the printable area by the number of microlenses (103 to 104), thereby allowing for the scalable stereolithographic fabrication of 3D features that surpass the resolution-to-area scaling limit. We extend the capability of integral lithography for programmable printing of deterministic nonperiodic structures through the rotational overlapping or stacking of multiple exposures with controlled angular offsets. This printing platform provides new possibilities for producing periodic and aperiodic microarchitectures spanning four orders of magnitude from micrometers to centimeters.

8.
ACS Nano ; 15(9): 14049-14060, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34339604

ABSTRACT

Evaporation-induced particle aggregation in drying droplets is of significant importance in the prevention of pathogen transfer due to the possibility of indirect fomite transmission of the infectious virus particles. In this study, particle aggregation was directionally controlled using contact line dynamics (pinned or slipping) and geometrical gradients on microstructured surfaces by the systematic investigation of the evaporation process on sessile droplets and sprayed microdroplets laden with virus-simulant nanoparticles. Using this mechanism, we designed robust particle capture surfaces by significantly inhibiting the contact transfer of particles from fomite surfaces. For the proof-of-concept, interconnected hexagonal and inverted pyramidal microwall were fabricated using ultraviolet-based nanoimprint lithography, which is considered to be a promising scalable manufacturing process. We demonstrated the potentials of an engineered microcavity surface to limit the contact transfer of particle aggregates deposited with the evaporation of microdroplets by 93% for hexagonal microwall and by 96% for inverted pyramidal microwall. The particle capture potential of the interconnected microstructures was also investigated using biological particles, including adenoviruses and lung-derived extracellular vesicles. The findings indicate that the proposed microstructured surfaces can reduce the indirect fomite transmission of highly infectious agents, including norovirus, rotavirus, or SARS-CoV-2, via respiratory droplets.


Subject(s)
COVID-19 , Fomites , Humans , SARS-CoV-2
9.
ACS Appl Mater Interfaces ; 13(28): 33618-33626, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34196537

ABSTRACT

Artificial liquid-repellent surfaces inspired by biomimetic structures provide a wide range of functional surfaces for various practical applications, such as self-cleaning, antisticking, oil/water separation, and droplet manipulation. However, functional biomimetic structures cannot be fabricated using conventional techniques. For example, mushroom-like topologies on the skin of springtails, which are referred to as "doubly reentrant structures," have attracted significant attention owing to their extraordinary liquid-repellent properties. Current methods of fabricating these reentrant structures have several limitations, such as complex material systems, processing steps, and additional chemical treatments. This study proposed a simple micro-shape-deformed approach to fabricate mushroom-like reentrant structures by digital light processing, a three-dimensional (3D) printing technique, with volumetric shrinkage. The nonuniform cross-linking process and light propagation during photopolymerization caused the deformation of the topological patterns atop the micropillar arrays, resulting in bent structures for mushroom-like shape-deformed microarchitectures. This 3D-printed shape-deformed microstructure exhibits a highly stable liquid repellency without perfluorinated coatings.

10.
Materials (Basel) ; 12(8)2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30999640

ABSTRACT

For many years, scientists have been aware of the importance of terahertz waves (T-rays), which have now emerged as an NDE (nondestructive evaluation) technique for certain ranges of the electronic spectrum. The present study deals with T-ray scanning techniques of honeycomb sandwich composite panels with a carbon-fiber-reinforced plastic (CFRP) skin as well as the refractive index (n), and the electrical conductivity (α) of glass fiber-reinforced plastic (GFRP) composites. For this experiment, the degree of penetration to FRP composites is investigated for the THz transmitted power based on the angle in the electric field (E-field) direction vs. the direction of the unidirectional carbon fibers. Also, when CFRP skin honeycomb sandwich panels are manufactured for use in aerospace applications, aluminum wires are twisted together into the one-sided surface of the honeycomb sandwich panels to protect against thunderstorms. The aluminum wires are partly visible because they are embedded in the CFRP skin on the honeycomb sandwich panels. After finishing work with a paintjob, the wires become invisible. Thus, detecting the aluminum wires is a key issue for product monitoring. Based on a simple resistor model, an optimal scanning method is proposed to determine the preferred scan orientation on the baseline of the E-field in the direction of fibers to evaluate the level of transmission of T-rays according to the frequency bandwidth. Thus, the combination of angles required to detect the aluminum wires embedded with carbon fibers on the surface of the composite panels can be determined.

11.
J Vis Exp ; (139)2018 09 11.
Article in English | MEDLINE | ID: mdl-30272669

ABSTRACT

Multiscale surface structures have attracted increasing interest owing to several potential applications in surface devices. However, an existing challenge in the field is the fabrication of hybrid micro-nano structures using a facile, cost-effective, and high-throughput method. To overcome these challenges, this paper proposes a protocol to fabricate multiscale structures using only an imprint process with an anodic aluminum oxide (AAO) filter and an evaporative self-aggregation process of nanofibers. Unlike previous attempts that have aimed to straighten nanofibers, we demonstrate a unique fabrication method for multiscale aggregated nanofibers with high aspect ratios. Furthermore, the surface morphology and wettability of these structures on various liquids were investigated to facilitate their use in multifunctional surfaces.


Subject(s)
Nanofibers/chemistry
12.
Rev Sci Instrum ; 86(5): 055108, 2015 May.
Article in English | MEDLINE | ID: mdl-26026559

ABSTRACT

For high-quality flexible devices from printing processes based on Roll-to-Roll (R2R) systems, overlay alignment during the patterning of each functional layer poses a major challenge. The reason is because flexible substrates have a relatively low stiffness compared with rigid substrates, and they are easily deformed during web handling in the R2R system. To achieve a high overlay accuracy for a flexible substrate, it is important not only to develop web handling modules (such as web guiding, tension control, winding, and unwinding) and a precise printing tool but also to control the synchronization of each unit in the total system. A R2R web handling system and reverse offset printing process were developed in this work, and an overlay between the 1st and 2nd layers of ±5µm on a 500 mm-wide film was achieved at a σ level of 2.4 and 2.8 (x and y directions, respectively) in a continuous R2R printing process. This paper presents the components and mechanisms used in reverse offset printing based on a R2R system and the printing results including positioning accuracy and overlay alignment accuracy.

13.
J Biosoc Sci ; 40(2): 269-81, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17537279

ABSTRACT

South Korea reported a total fertility rate (TFR) of 1.08 in 2005. This is the lowest level of all nations in the Organisation for Economic Co-operation and Development (OECD). Recently, the decline in the fertility rate has been a dominant phenomenon in Korea's major cities. This study investigated the relationship between social environmental factors and fertility intentions for married women in Seoul, the capital of Korea, using a sample of 2211 married women who responded to the Seoul Citizens Health and Social Indicators Survey, 2005. Here, the effects of selected social environmental characteristics on fertility intentions are explored using multivariate logistic regression models. The relationships among a woman's age, number of living children, job type, housing type, and social group participation were strong indicators of the intention to have additional children. Younger women living with fewer children generally have a higher intention to have additional children. Among women's job types, blue-collar workers have a lower preference for additional children than white-collar workers and housewives. Married women participating in social groups have a lower preference for additional children than non-participants. Women's participation in social activities appears to have various benefits, both individually and socially. However, whereas women's participation in economic activities has been linked to questions of fertility in previous studies, the relationship between fertility and social activities has been downplayed. Women's participation in social activities has increased over the past several decades, and the trend continues to grow. Therefore, women's participation in social activities must be accepted as the status quo, and compatibility between women's participation in social activities and childrearing needs to be increased. Consequently, a strong foundation for a fertility-friendly environment is needed, focusing on blue-collar workers and participation in social activities by married women.


Subject(s)
Family Characteristics , Family Planning Services/statistics & numerical data , Fertility , Interpersonal Relations , Marriage , Social Environment , Adult , Demography , Female , Humans , Korea , Odds Ratio , Social Support , Socioeconomic Factors
14.
J Prev Med Public Health ; 38(3): 259-66, 2005 Aug.
Article in Korean | MEDLINE | ID: mdl-16323625

ABSTRACT

Recently much attention has been paid to the effect of neighborhood characteristics on the health of individuals, independent of individual demographic and/or socioeconomic characteristics. Although many empirical studies of a kind, mostly based on Western society, have appeared on various international journals, few studies have shown empirical evidence of neighborhood characteristics as an independent and significant risk factor of ill health in Korea. This paper discusses possible reasons that neighborhood seems to be neither significant nor substantial regarding its impact on the health of Koreans. Addressing the uniqueness of Korean society regarding the concept of neighborhood, attributes of neighborhoods, and methodological challenges, authors suggest that more sophisticated conceptual and methodological approach, specific to Korean society, should enable to reveal the effect of neighborhood characteristics on individual health in Korea.


Subject(s)
Health Status , Residence Characteristics , Humans , Korea
SELECTION OF CITATIONS
SEARCH DETAIL
...