Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Mol Ecol Resour ; 22(3): 1168-1177, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34687590

ABSTRACT

Cymbidium goeringii, commonly known as the spring orchid, has long been favoured for horticultural purposes in Asian countries. It is a popular orchid with much demand for improvement and development for its valuable varieties. Until now, its reference genome has not been published despite its popularity and conservation efforts. Here, we report the de novo assembly of the C. goeringii genome, which is the largest among the orchids published to date, using a strategy that combines short- and long-read sequencing and chromosome conformation capture (Hi-C) information. The total length of all scaffolds is 3.99 Gb, with an N50 scaffold size of 178.2 Mb. A total of 29,556 protein-coding genes were annotated and 3.55 Gb (88.87% of genome) repetitive sequences were identified. We constructed pseudomolecular chromosomes using Hi-C, incorporating 89.4% of the scaffolds in 20 chromosomes. We identified 220 expanded and 106 contracted genes families in C. goeringii after divergence from its close relative. We also identified new gene families, resistance gene analogues and changes within the MADS-box genes, which control a diverse set of developmental processes during orchid evolution. Our high quality chromosomal-level assembly of C. goeringii can provide a platform for elucidating the genomic evolution of orchids, mining functional genes for agronomic traits and for developing molecular markers for accelerated breeding as well as accelerating conservation efforts.


Subject(s)
Orchidaceae , Plant Breeding , Chromosomes , Genome , Humans , Molecular Sequence Annotation , Orchidaceae/genetics
2.
Mol Cells ; 44(9): 680-687, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34588322

ABSTRACT

Coronavirus disease, COVID-19 (coronavirus disease 2019), caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has a higher case fatality rate in European countries than in others, especially East Asian ones. One potential explanation for this regional difference is the diversity of the viral infection efficiency. Here, we analyzed the allele frequencies of a nonsynonymous variant rs12329760 (V197M) in the TMPRSS2 gene, a key enzyme essential for viral infection and found a significant association between the COVID-19 case fatality rate and the V197M allele frequencies, using over 200,000 present-day and ancient genomic samples. East Asian countries have higher V197M allele frequencies than other regions, including European countries which correlates to their lower case fatality rates. Structural and energy calculation analysis of the V197M amino acid change showed that it destabilizes the TMPRSS2 protein, possibly negatively affecting its ACE2 and viral spike protein processing.


Subject(s)
COVID-19/genetics , COVID-19/mortality , Serine Endopeptidases/genetics , Asian People , COVID-19/ethnology , Gene Frequency , Humans , Models, Molecular , Mortality , Polymorphism, Single Nucleotide , Republic of Korea , Serine Endopeptidases/chemistry , White People
3.
Sci Rep ; 11(1): 12317, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112891

ABSTRACT

Aging is associated with widespread physiological changes, including skeletal muscle weakening, neuron system degeneration, hair loss, and skin wrinkling. Previous studies have identified numerous molecular biomarkers involved in these changes, but their regulatory mechanisms and functional repercussions remain elusive. In this study, we conducted next-generation sequencing of DNA methylation and RNA sequencing of blood samples from 51 healthy adults between 20 and 74 years of age and identified aging-related epigenetic and transcriptomic biomarkers. We also identified candidate molecular targets that can reversely regulate the transcriptomic biomarkers of aging by reconstructing a gene regulatory network model and performing signal flow analysis. For validation, we screened public experimental data including gene expression profiles in response to thousands of chemical perturbagens. Despite insufficient data on the binding targets of perturbagens and their modes of action, curcumin, which reversely regulated the biomarkers in the experimental dataset, was found to bind and inhibit JUN, which was identified as a candidate target via signal flow analysis. Collectively, our results demonstrate the utility of a network model for integrative analysis of omics data, which can help elucidate inter-omics regulatory mechanisms and develop therapeutic strategies against aging.


Subject(s)
Aging/genetics , DNA Methylation/genetics , Epigenome/genetics , Transcriptome/genetics , Adult , Aged , Aging/blood , Aging/pathology , Alopecia/blood , Alopecia/genetics , Alopecia/pathology , Biomarkers/blood , Female , Humans , Male , Middle Aged , Muscle Weakness/blood , Muscle Weakness/genetics , Muscle Weakness/pathology , Muscle, Skeletal/pathology , Neurons/metabolism , Neurons/pathology , Skin Aging/genetics
4.
Gigascience ; 10(3)2021 03 12.
Article in English | MEDLINE | ID: mdl-33710328

ABSTRACT

BACKGROUND: DNBSEQ-T7 is a new whole-genome sequencer developed by Complete Genomics and MGI using DNA nanoball and combinatorial probe anchor synthesis technologies to generate short reads at a very large scale-up to 60 human genomes per day. However, it has not been objectively and systematically compared against Illumina short-read sequencers. FINDINGS: By using the same KOREF sample, the Korean Reference Genome, we have compared 7 sequencing platforms including BGISEQ-500, DNBSEQ-T7, HiSeq2000, HiSeq2500, HiSeq4000, HiSeqX10, and NovaSeq6000. We measured sequencing quality by comparing sequencing statistics (base quality, duplication rate, and random error rate), mapping statistics (mapping rate, depth distribution, and percent GC coverage), and variant statistics (transition/transversion ratio, dbSNP annotation rate, and concordance rate with single-nucleotide polymorphism [SNP] genotyping chip) across the 7 sequencing platforms. We found that MGI platforms showed a higher concordance rate for SNP genotyping than HiSeq2000 and HiSeq4000. The similarity matrix of variant calls confirmed that the 2 MGI platforms have the most similar characteristics to the HiSeq2500 platform. CONCLUSIONS: Overall, MGI and Illumina sequencing platforms showed comparable levels of sequencing quality, uniformity of coverage, percent GC coverage, and variant accuracy; thus we conclude that the MGI platforms can be used for a wide range of genomics research fields at a lower cost than the Illumina platforms.


Subject(s)
Benchmarking , High-Throughput Nucleotide Sequencing , Genome, Human , Humans , Republic of Korea , Sequence Analysis, DNA , Whole Genome Sequencing
5.
Front Genet ; 12: 633731, 2021.
Article in English | MEDLINE | ID: mdl-33633791

ABSTRACT

The Welfare Genome Project (WGP) provided 1,000 healthy Korean volunteers with detailed genetic and health reports to test the social perception of integrating personal genetic and healthcare data at a large-scale. WGP was launched in 2016 in the Ulsan Metropolitan City as the first large-scale genome project with public participation in Korea. The project produced a set of genetic materials, genotype information, clinical data, and lifestyle survey answers from participants aged 20-96. As compensation, the participants received a free general health check-up on 110 clinical traits, accompanied by a genetic report of their genotypes followed by genetic counseling. In a follow-up survey, 91.0% of the participants indicated that their genetic reports motivated them to improve their health. Overall, WGP expanded not only the general awareness of genomics, DNA sequencing technologies, bioinformatics, and bioethics regulations among all the parties involved, but also the general public's understanding of how genome projects can indirectly benefit their health and lifestyle management. WGP established a data construction framework for not only scientific research but also the welfare of participants. In the future, the WGP framework can help lay the groundwork for a new personalized healthcare system that is seamlessly integrated with existing public medical infrastructure.

6.
Sci Adv ; 6(22): eaaz7835, 2020 05.
Article in English | MEDLINE | ID: mdl-32766443

ABSTRACT

We present the initial phase of the Korean Genome Project (Korea1K), including 1094 whole genomes (sequenced at an average depth of 31×), along with data of 79 quantitative clinical traits. We identified 39 million single-nucleotide variants and indels of which half were singleton or doubleton and detected Korean-specific patterns based on several types of genomic variations. A genome-wide association study illustrated the power of whole-genome sequences for analyzing clinical traits, identifying nine more significant candidate alleles than previously reported from the same linkage disequilibrium blocks. Also, Korea1K, as a reference, showed better imputation accuracy for Koreans than the 1KGP panel. As proof of utility, germline variants in cancer samples could be filtered out more effectively when the Korea1K variome was used as a panel of normals compared to non-Korean variome sets. Overall, this study shows that Korea1K can be a useful genotypic and phenotypic resource for clinical and ethnogenetic studies.


Subject(s)
Genome, Human , Genome-Wide Association Study , Asian People , Genotype , Humans , Polymorphism, Single Nucleotide , Republic of Korea
7.
Proc Natl Acad Sci U S A ; 117(34): 20662-20671, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32753383

ABSTRACT

The endangered whale shark (Rhincodon typus) is the largest fish on Earth and a long-lived member of the ancient Elasmobranchii clade. To characterize the relationship between genome features and biological traits, we sequenced and assembled the genome of the whale shark and compared its genomic and physiological features to those of 83 animals and yeast. We examined the scaling relationships between body size, temperature, metabolic rates, and genomic features and found both general correlations across the animal kingdom and features specific to the whale shark genome. Among animals, increased lifespan is positively correlated to body size and metabolic rate. Several genomic traits also significantly correlated with body size, including intron and gene length. Our large-scale comparative genomic analysis uncovered general features of metazoan genome architecture: Guanine and cytosine (GC) content and codon adaptation index are negatively correlated, and neural connectivity genes are longer than average genes in most genomes. Focusing on the whale shark genome, we identified multiple features that significantly correlate with lifespan. Among these were very long gene length, due to introns being highly enriched in repetitive elements such as CR1-like long interspersed nuclear elements, and considerably longer neural genes of several types, including connectivity, activity, and neurodegeneration genes. The whale shark genome also has the second slowest evolutionary rate observed in vertebrates to date. Our comparative genomics approach uncovered multiple genetic features associated with body size, metabolic rate, and lifespan and showed that the whale shark is a promising model for studies of neural architecture and lifespan.


Subject(s)
Adaptation, Physiological/genetics , Body Size/physiology , Sharks/genetics , Animals , Base Sequence/genetics , Body Size/genetics , Genome/genetics , Genomics/methods , Longevity/genetics , Sharks/metabolism , Temperature
8.
Mol Cells ; 43(1): 86-95, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-31940721

ABSTRACT

The red-crowned crane (Grus japonensis) is an endangered, large-bodied crane native to East Asia. It is a traditional symbol of longevity and its long lifespan has been confirmed both in captivity and in the wild. Lifespan in birds is known to be positively correlated with body size and negatively correlated with metabolic rate, though the genetic mechanisms for the red-crowned crane's long lifespan have not previously been investigated. Using whole genome sequencing and comparative evolutionary analyses against the grey-crowned crane and other avian genomes, including the long-lived common ostrich, we identified redcrowned crane candidate genes with known associations with longevity. Among these are positively selected genes in metabolism and immunity pathways (NDUFA5, NDUFA8, NUDT12, SOD3, CTH , RPA1, PHAX, HNMT , HS2ST1 , PPCDC , PSTK CD8B, GP9, IL-9R, and PTPRC). Our analyses provide genetic evidence for low metabolic rate and longevity, accompanied by possible convergent adaptation signatures among distantly related large and long-lived birds. Finally, we identified low genetic diversity in the red-crowned crane, consistent with its listing as an endangered species, and this genome should provide a useful genetic resource for future conservation studies of this rare and iconic species.


Subject(s)
Avian Proteins/genetics , Birds/physiology , Animals , Endangered Species , Immunity/genetics , Longevity/genetics , Polymorphism, Genetic , Species Specificity , Transcriptome , Whole Genome Sequencing
9.
Gigascience ; 8(12)2019 12 01.
Article in English | MEDLINE | ID: mdl-31794015

ABSTRACT

BACKGROUND: Long DNA reads produced by single-molecule and pore-based sequencers are more suitable for assembly and structural variation discovery than short-read DNA fragments. For de novo assembly, Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) are the favorite options. However, PacBio's SMRT sequencing is expensive for a full human genome assembly and costs more than $40,000 US for 30× coverage as of 2019. ONT PromethION sequencing, on the other hand, is 1/12 the price of PacBio for the same coverage. This study aimed to compare the cost-effectiveness of ONT PromethION and PacBio's SMRT sequencing in relation to the quality. FINDINGS: We performed whole-genome de novo assemblies and comparison to construct an improved version of KOREF, the Korean reference genome, using sequencing data produced by PromethION and PacBio. With PromethION, an assembly using sequenced reads with 64× coverage (193 Gb, 3 flowcell sequencing) resulted in 3,725 contigs with N50s of 16.7 Mb and a total genome length of 2.8 Gb. It was comparable to a KOREF assembly constructed using PacBio at 62× coverage (188 Gb, 2,695 contigs, and N50s of 17.9 Mb). When we applied Hi-C-derived long-range mapping data, an even higher quality assembly for the 64× coverage was achieved, resulting in 3,179 scaffolds with an N50 of 56.4 Mb. CONCLUSION: The pore-based PromethION approach provided a high-quality chromosome-scale human genome assembly at a low cost with long maximum contig and scaffold lengths and was more cost-effective than PacBio at comparable quality measurements.


Subject(s)
Chromosomes, Human/genetics , Contig Mapping/economics , Whole Genome Sequencing/methods , Contig Mapping/methods , Cost-Benefit Analysis , Databases, Genetic , High-Throughput Nucleotide Sequencing/economics , High-Throughput Nucleotide Sequencing/methods , Humans , Republic of Korea , Single Molecule Imaging , Whole Genome Sequencing/economics
10.
Transl Psychiatry ; 9(1): 262, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31624227

ABSTRACT

More than 300 million people worldwide experience depression; annually, ~800,000 people die by suicide. Unfortunately, conventional interview-based diagnosis is insufficient to accurately predict a psychiatric status. We developed machine learning models to predict depression and suicide risk using blood methylome and transcriptome data from 56 suicide attempters (SAs), 39 patients with major depressive disorder (MDD), and 87 healthy controls. Our random forest classifiers showed accuracies of 92.6% in distinguishing SAs from MDD patients, 87.3% in distinguishing MDD patients from controls, and 86.7% in distinguishing SAs from controls. We also developed regression models for predicting psychiatric scales with R2 values of 0.961 and 0.943 for Hamilton Rating Scale for Depression-17 and Scale for Suicide Ideation, respectively. Multi-omics data were used to construct psychiatric status prediction models for improved mental health treatment.


Subject(s)
Depressive Disorder, Major/diagnosis , Epigenome , Suicide, Attempted/psychology , Transcriptome , Adult , Case-Control Studies , Depressive Disorder, Major/blood , Depressive Disorder, Major/genetics , Female , Humans , Machine Learning , Male , Middle Aged , Models, Psychological , Psychiatric Status Rating Scales , Young Adult
11.
Genome Biol ; 20(1): 181, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31464627

ABSTRACT

BACKGROUND: Birds of prey (raptors) are dominant apex predators in terrestrial communities, with hawks (Accipitriformes) and falcons (Falconiformes) hunting by day and owls (Strigiformes) hunting by night. RESULTS: Here, we report new genomes and transcriptomes for 20 species of birds, including 16 species of birds of prey, and high-quality reference genomes for the Eurasian eagle-owl (Bubo bubo), oriental scops owl (Otus sunia), eastern buzzard (Buteo japonicus), and common kestrel (Falco tinnunculus). Our extensive genomic analysis and comparisons with non-raptor genomes identify common molecular signatures that underpin anatomical structure and sensory, muscle, circulatory, and respiratory systems related to a predatory lifestyle. Compared with diurnal birds, owls exhibit striking adaptations to the nocturnal environment, including functional trade-offs in the sensory systems, such as loss of color vision genes and selection for enhancement of nocturnal vision and other sensory systems that are convergent with other nocturnal avian orders. Additionally, we find that a suite of genes associated with vision and circadian rhythm are differentially expressed in blood tissue between nocturnal and diurnal raptors, possibly indicating adaptive expression change during the transition to nocturnality. CONCLUSIONS: Overall, raptor genomes show genomic signatures associated with the origin and maintenance of several specialized physiological and morphological features essential to be apex predators.


Subject(s)
Biological Evolution , Circadian Rhythm/genetics , Genome , Predatory Behavior/physiology , Raptors/genetics , Adaptation, Physiological/genetics , Animals , Phylogeny
12.
BMC Biol ; 17(1): 28, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30925871

ABSTRACT

BACKGROUND: Unique among cnidarians, jellyfish have remarkable morphological and biochemical innovations that allow them to actively hunt in the water column and were some of the first animals to become free-swimming. The class Scyphozoa, or true jellyfish, are characterized by a predominant medusa life-stage consisting of a bell and venomous tentacles used for hunting and defense, as well as using pulsed jet propulsion for mobility. Here, we present the genome of the giant Nomura's jellyfish (Nemopilema nomurai) to understand the genetic basis of these key innovations. RESULTS: We sequenced the genome and transcriptomes of the bell and tentacles of the giant Nomura's jellyfish as well as transcriptomes across tissues and developmental stages of the Sanderia malayensis jellyfish. Analyses of the Nemopilema and other cnidarian genomes revealed adaptations associated with swimming, marked by codon bias in muscle contraction and expansion of neurotransmitter genes, along with expanded Myosin type II family and venom domains, possibly contributing to jellyfish mobility and active predation. We also identified gene family expansions of Wnt and posterior Hox genes and discovered the important role of retinoic acid signaling in this ancient lineage of metazoans, which together may be related to the unique jellyfish body plan (medusa formation). CONCLUSIONS: Taken together, the Nemopilema jellyfish genome and transcriptomes genetically confirm their unique morphological and physiological traits, which may have contributed to the success of jellyfish as early multi-cellular predators.


Subject(s)
Evolution, Molecular , Genome/physiology , Predatory Behavior , Scyphozoa/physiology , Animals , Biological Evolution , Phylogeny , Scyphozoa/genetics
13.
Genome Biol Evol ; 11(3): 949-953, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30825304

ABSTRACT

Coral reefs composed of stony corals are threatened by global marine environmental changes. However, soft coral communities of octocorallian species, appear more resilient. The genomes of several cnidarians species have been published, including from stony corals, sea anemones, and hydra. To fill the phylogenetic gap for octocoral species of cnidarians, we sequenced the octocoral, Dendronephthya gigantea, a nonsymbiotic soft coral, commonly known as the carnation coral. The D. gigantea genome size is ∼276 Mb. A high-quality genome assembly was constructed from PacBio long reads (29.85 Gb with 108× coverage) and Illumina short paired-end reads (35.54 Gb with 128× coverage) resulting in the highest N50 value (1.4 Mb) reported thus far among cnidarian genomes. About 12% of the genome is repetitive elements and contained 28,879 predicted protein-coding genes. This gene set is composed of 94% complete BUSCO ortholog benchmark genes, which is the second highest value among the cnidarians, indicating high quality. Based on molecular phylogenetic analysis, octocoral and hexacoral divergence times were estimated at 544 MYA. There is a clear difference in Hox gene composition between these species: unlike hexacorals, the Antp superclass Evx gene was absent in D. gigantea. Here, we present the first genome assembly of a nonsymbiotic octocoral, D. gigantea to aid in the comparative genomic analysis of cnidarians, including stony and soft corals, both symbiotic and nonsymbiotic. The D. gigantea genome may also provide clues to mechanisms of differential coping between the soft and stony corals in response to scenarios of global warming.


Subject(s)
Anthozoa/genetics , Animals , Genome , Phylogeny
14.
Sci Rep ; 8(1): 5677, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29618732

ABSTRACT

High-coverage whole-genome sequencing data of a single ethnicity can provide a useful catalogue of population-specific genetic variations, and provides a critical resource that can be used to more accurately identify pathogenic genetic variants. We report a comprehensive analysis of the Korean population, and present the Korean National Standard Reference Variome (KoVariome). As a part of the Korean Personal Genome Project (KPGP), we constructed the KoVariome database using 5.5 terabases of whole genome sequence data from 50 healthy Korean individuals in order to characterize the benign ethnicity-relevant genetic variation present in the Korean population. In total, KoVariome includes 12.7M single-nucleotide variants (SNVs), 1.7M short insertions and deletions (indels), 4K structural variations (SVs), and 3.6K copy number variations (CNVs). Among them, 2.4M (19%) SNVs and 0.4M (24%) indels were identified as novel. We also discovered selective enrichment of 3.8M SNVs and 0.5M indels in Korean individuals, which were used to filter out 1,271 coding-SNVs not originally removed from the 1,000 Genomes Project when prioritizing disease-causing variants. KoVariome health records were used to identify novel disease-causing variants in the Korean population, demonstrating the value of high-quality ethnic variation databases for the accurate interpretation of individual genomes and the precise characterization of genetic variations.


Subject(s)
DNA Copy Number Variations , Disease/genetics , Genetics, Population , Genome, Human , INDEL Mutation , Polymorphism, Single Nucleotide , Whole Genome Sequencing/methods , Databases, Genetic , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Reference Standards , Republic of Korea , Sequence Analysis, DNA
16.
PLoS One ; 12(7): e0180418, 2017.
Article in English | MEDLINE | ID: mdl-28678835

ABSTRACT

Myotis rufoniger is a vesper bat in the genus Myotis. Here we report the whole genome sequence and analyses of the M. rufoniger. We generated 124 Gb of short-read DNA sequences with an estimated genome size of 1.88 Gb at a sequencing depth of 66× fold. The sequences were aligned to M. brandtii bat reference genome at a mapping rate of 96.50% covering 95.71% coding sequence region at 10× coverage. The divergence time of Myotis bat family is estimated to be 11.5 million years, and the divergence time between M. rufoniger and its closest species M. davidii is estimated to be 10.4 million years. We found 1,239 function-altering M. rufoniger specific amino acid sequences from 929 genes compared to other Myotis bat and mammalian genomes. The functional enrichment test of the 929 genes detected amino acid changes in melanin associated DCT, SLC45A2, TYRP1, and OCA2 genes possibly responsible for the M. rufoniger's red fur color and a general coloration in Myotis. N6AMT1 gene, associated with arsenic resistance, showed a high degree of function alteration in M. rufoniger. We further confirmed that the M. rufoniger also has bat-specific sequences within FSHB, GHR, IGF1R, TP53, MDM2, SLC45A2, RGS7BP, RHO, OPN1SW, and CNGB3 genes that have already been published to be related to bat's reproduction, lifespan, flight, low vision, and echolocation. Additionally, our demographic history analysis found that the effective population size of Myotis clade has been consistently decreasing since ~30k years ago. M. rufoniger's effective population size was the lowest in Myotis bats, confirming its relatively low genetic diversity.


Subject(s)
Chiroptera/genetics , Genome , Amino Acid Substitution , Animals , Chiroptera/classification , Genetic Variation , Mutation , Phylogeny
17.
Sci Adv ; 3(2): e1601877, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28164156

ABSTRACT

Ancient genomes have revolutionized our understanding of Holocene prehistory and, particularly, the Neolithic transition in western Eurasia. In contrast, East Asia has so far received little attention, despite representing a core region at which the Neolithic transition took place independently ~3 millennia after its onset in the Near East. We report genome-wide data from two hunter-gatherers from Devil's Gate, an early Neolithic cave site (dated to ~7.7 thousand years ago) located in East Asia, on the border between Russia and Korea. Both of these individuals are genetically most similar to geographically close modern populations from the Amur Basin, all speaking Tungusic languages, and, in particular, to the Ulchi. The similarity to nearby modern populations and the low levels of additional genetic material in the Ulchi imply a high level of genetic continuity in this region during the Holocene, a pattern that markedly contrasts with that reported for Europe.


Subject(s)
Archaeology , Genome, Human , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Asia, Eastern , Genotype , Guanine Nucleotide Exchange Factors/genetics , Humans , Phenotype , Polymorphism, Single Nucleotide , Principal Component Analysis , Receptors, Ectodysplasin/genetics , Ubiquitin-Protein Ligases
18.
Sci Rep ; 7: 40233, 2017 01 11.
Article in English | MEDLINE | ID: mdl-28074842

ABSTRACT

Cetacean body structure and physiology exhibit dramatic adaptations to their aquatic environment. Fibroblast growth factors (FGFs) are a family of essential factors that regulate animal development and physiology; however, their role in cetacean evolution is not clearly understood. Here, we sequenced the fin whale genome and analysed FGFs from 8 cetaceans. FGF22, a hair follicle-enriched gene, exhibited pseudogenization, indicating that the function of this gene is no longer necessary in cetaceans that have lost most of their body hair. An evolutionary analysis revealed signatures of positive selection for FGF3 and FGF11, genes related to ear and tooth development and hypoxia, respectively. We found a D203G substitution in cetacean FGF9, which was predicted to affect FGF9 homodimerization, suggesting that this gene plays a role in the acquisition of rigid flippers for efficient manoeuvring. Cetaceans utilize low bone density as a buoyancy control mechanism, but the underlying genes are not known. We found that the expression of FGF23, a gene associated with reduced bone density, is greatly increased in the cetacean liver under hypoxic conditions, thus implicating FGF23 in low bone density in cetaceans. Altogether, our results provide novel insights into the roles of FGFs in cetacean adaptation to the aquatic environment.


Subject(s)
Adaptation, Physiological , Evolution, Molecular , Fibroblast Growth Factors/genetics , Fin Whale/genetics , Fin Whale/physiology , Animals , Genome , Phylogeny , Selection, Genetic
19.
BMB Rep ; 50(1): 3-4, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28042784

ABSTRACT

Recent advances in genome sequencing technologies have enabled humans to generate and investigate the genomes of wild species. This includes the big cat family, such as tigers, lions, and leopards. Adding the first high quality leopard genome, we have performed an in-depth comparative analysis to identify the genomic signatures in the evolution of felid to become the top predators on land. Our study focused on how the carnivore genomes, as compared to the omnivore or herbivore genomes, shared evolutionary adaptations in genes associated with nutrient metabolism, muscle strength, agility, and other traits responsible for hunting and meat digestion. We found genetic evidence that genomes represent what animals eat through modifying genes. Highly conserved genetically relevant regions were discovered in genomes at the family level. Also, the Felidae family genomes exhibited low levels of genetic diversity associated with decreased population sizes, presumably because of their strict diet, suggesting their vulnerability and critical conservation status. Our findings can be used for human health enhancement, since we share the same genes as cats with some variation. This is an example how wildlife genomes can be a critical resource for human evolution, providing key genetic marker information for disease treatment. [BMB Reports 2017; 50(1): 3-4].


Subject(s)
Animal Nutritional Physiological Phenomena/genetics , Biological Evolution , Cats/genetics , Panthera/genetics , Animals , Chromosome Mapping , Diet , Felidae , Genetic Variation , Genome , Herbivory/genetics , High-Throughput Nucleotide Sequencing , Phylogeny
20.
Genome Biol ; 17(1): 211, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27802837

ABSTRACT

BACKGROUND: There are three main dietary groups in mammals: carnivores, omnivores, and herbivores. Currently, there is limited comparative genomics insight into the evolution of dietary specializations in mammals. Due to recent advances in sequencing technologies, we were able to perform in-depth whole genome analyses of representatives of these three dietary groups. RESULTS: We investigated the evolution of carnivory by comparing 18 representative genomes from across Mammalia with carnivorous, omnivorous, and herbivorous dietary specializations, focusing on Felidae (domestic cat, tiger, lion, cheetah, and leopard), Hominidae, and Bovidae genomes. We generated a new high-quality leopard genome assembly, as well as two wild Amur leopard whole genomes. In addition to a clear contraction in gene families for starch and sucrose metabolism, the carnivore genomes showed evidence of shared evolutionary adaptations in genes associated with diet, muscle strength, agility, and other traits responsible for successful hunting and meat consumption. Additionally, an analysis of highly conserved regions at the family level revealed molecular signatures of dietary adaptation in each of Felidae, Hominidae, and Bovidae. However, unlike carnivores, omnivores and herbivores showed fewer shared adaptive signatures, indicating that carnivores are under strong selective pressure related to diet. Finally, felids showed recent reductions in genetic diversity associated with decreased population sizes, which may be due to the inflexible nature of their strict diet, highlighting their vulnerability and critical conservation status. CONCLUSIONS: Our study provides a large-scale family level comparative genomic analysis to address genomic changes associated with dietary specialization. Our genomic analyses also provide useful resources for diet-related genetic and health research.


Subject(s)
Genetic Variation , Genome , Panthera/genetics , Sequence Analysis, DNA , Adaptation, Physiological/genetics , Animals , Biological Evolution , Cats , Herbivory/genetics , Mammals/genetics , Molecular Sequence Annotation , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...