Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Clin Chem ; 69(10): 1155-1162, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37566393

ABSTRACT

BACKGROUND: Despite clinically demonstrated accuracy in next generation sequencing (NGS) data, many clinical laboratories continue to confirm variants with Sanger sequencing, which increases cost of testing and turnaround time. Several studies have assessed the accuracy of NGS in detecting single nucleotide variants; however, less has been reported about insertion, deletion, and deletion-insertion variants (indels). METHODS: We performed a retrospective analysis from 2015-2022 of indel results from a subset of NGS targeted gene panel tests offered through the Mayo Clinic Genomics Laboratories. We compared results from NGS and Sanger sequencing of indels observed in clinical runs and during the intra-assay validation of the tests. RESULTS: Results demonstrated 100% concordance between NGS and Sanger sequencing for over 490 indels (217 unique), ranging in size from 1 to 68 basepairs (bp). The majority of indels were deletions (77%) and 1 to 5 bp in length (90%). Variant frequencies ranged from 11.4% to 67.4% and 85.1% to 100% for heterozygous and homozygous variants, respectively, with a median depth of coverage of 2562×. A subset of indels (7%) were located in complex regions of the genome, and these were accurately detected by NGS. We also demonstrated 100% reproducibility of indel detection (n = 179) during intra-assay validation. CONCLUSIONS: Together this data demonstrates that reportable indel variants up to 68 bp can be accurately assessed using NGS, even when they occur in complex regions. Depending on the complexity of the region or variant, Sanger sequence confirmation of indels is usually not necessary if the variants meet appropriate coverage and allele frequency thresholds.


Subject(s)
Genome , High-Throughput Nucleotide Sequencing , Humans , Reproducibility of Results , Retrospective Studies , High-Throughput Nucleotide Sequencing/methods , Gene Frequency
2.
Case Rep Hematol ; 2023: 9771388, 2023.
Article in English | MEDLINE | ID: mdl-37434656

ABSTRACT

The MN1::ETV6 gene fusion resulting from t(12;22)(p13;q12) has been rarely reported in myeloid neoplasms. We describe a 69-year-old male with newly diagnosed acute myeloid leukemia (AML) with erythroid differentiation and t(12;22)(p13;q12) demonstrated by conventional chromosome studies. Subsequent fluorescence in situ hybridization studies demonstrated a balanced ETV6 gene rearrangement (at 12p13). To further characterize this translocation, whole-genome sequencing was performed which confirmed t(12;22) with breakpoints involving the MN1 and ETV6 genes. Herein, we describe our case and review the literature to summarize the clinical and laboratory findings in patients with this rare but recurrent MN1::ETV6 gene fusion observed in myeloid neoplasms. Importantly, this case expands the clinical spectrum associated with the MN1::ETV6 gene fusion to include AML with erythroid differentiation. Lastly, this case demonstrates the importance of moving toward more comprehensive molecular testing to fully characterize the driver events in neoplastic genomes.

3.
J Mol Diagn ; 25(7): 524-531, 2023 07.
Article in English | MEDLINE | ID: mdl-37088140

ABSTRACT

Genome sequencing (GS) is a powerful clinical tool used for the comprehensive diagnosis of germline disorders. GS library preparation typically involves mechanical DNA fragmentation, end repair, and bead-based library size selection followed by adapter ligation, which can require a large amount of input genomic DNA. Tagmentation using bead-linked transposomes can simplify the library preparation process and reduce the DNA input requirement. Here we describe the clinical validation of tagmentation-based PCR-free GS as a clinical test for rare germline disorders. Compared with the Genome-in-a-Bottle Consortium benchmark variant sets, GS had a recall >99.7% and a precision of 99.8% for single nucleotide variants and small insertion-deletions. GS also exhibited 100% sensitivity for clinically reported sequence variants and the copy number variants examined. Furthermore, GS detected mitochondrial sequence variants above 5% heteroplasmy and showed reliable detection of disease-relevant repeat expansions and SMN1 homozygous loss. Our results indicate that while lowering DNA input requirements and reducing library preparation time, GS enables uniform coverage across the genome as well as robust detection of various types of genetic alterations. With the advantage of comprehensive profiling of multiple types of genetic alterations, GS is positioned as an ideal first-tier diagnostic test for germline disorders.


Subject(s)
DNA , Rare Diseases , Humans , Base Sequence , Chromosome Mapping , Sequence Analysis, DNA/methods , Gene Library , High-Throughput Nucleotide Sequencing/methods
4.
Elife ; 112022 07 01.
Article in English | MEDLINE | ID: mdl-35775732

ABSTRACT

How DNA sequence affects the dynamics and position of RNA Polymerase II (Pol II) during transcription remains poorly understood. Here, we used naturally occurring genetic variation in F1 hybrid mice to explore how DNA sequence differences affect the genome-wide distribution of Pol II. We measured the position and orientation of Pol II in eight organs collected from heterozygous F1 hybrid mice using ChRO-seq. Our data revealed a strong genetic basis for the precise coordinates of transcription initiation and promoter proximal pause, allowing us to redefine molecular models of core transcriptional processes. Our results implicate DNA sequence, including both known and novel DNA sequence motifs, as key determinants of the position of Pol II initiation and pause. We report evidence that initiation site selection follows a stochastic process similar to Brownian motion along the DNA template. We found widespread differences in the position of transcription termination, which impact the primary structure and stability of mature mRNA. Finally, we report evidence that allelic changes in transcription often affect mRNA and ncRNA expression across broad genomic domains. Collectively, we reveal how DNA sequences shape core transcriptional processes at single nucleotide resolution in mammals.


Subject(s)
RNA Polymerase II , Transcription, Genetic , Animals , Mammals/genetics , Mice , Promoter Regions, Genetic , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Messenger/metabolism , Transcription Initiation Site
5.
Amyloid ; 29(4): 255-262, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35575118

ABSTRACT

BACKGROUND: ß2-microglobulin amyloidosis was first described in the 1980s as a protein deposition disease associated with long-term haemodialysis. More recently, two inherited forms resulting from separate point mutations in the ß2-microglobulin gene have been identified. In this report, we detail a novel ß2M variant, P32L, caused by a unique dinucleotide mutation that is linked to systemic hereditary ß2-microglobulin amyloidosis. METHODS: Three family members from a Portuguese kinship featured cardiomyopathy, requiring organ transplantation in one case, along with soft tissue involvement; other involvements included gastrointestinal, neuropathic and sicca syndrome. In vitro studies with recombinant P32L, P32G, D76N and wild-type ß2-microglobulin were undertaken to compare the biophysical properties of the proteins. RESULTS: The P32L variant was caused by the unique heterozygous dinucleotide mutation c.154_155delinsTT. Amyloid disease featured lowered serum ß2-microglobulin levels with near equal amounts of circulating P32L and wild-type proteins; amyloid deposits were composed exclusively of P32L variant protein. In vitro studies of P32L demonstrated thermodynamic and chemical instability and enhanced susceptibility to proteolysis with rapid formation of pre-fibrillar oligomeric structures by N- and C-terminally truncated species under physiological conditions. CONCLUSIONS: This work provides both clinical and experimental evidence supporting the critical role of P32 residue replacement in ß2M amyloid fibrillogenesis.


Subject(s)
Amyloidosis, Familial , Amyloidosis , Humans , Amyloid/metabolism , Amyloidosis/metabolism , Amyloidosis, Familial/genetics , beta 2-Microglobulin/metabolism , Proline/genetics
6.
Nat Genet ; 54(3): 295-305, 2022 03.
Article in English | MEDLINE | ID: mdl-35273399

ABSTRACT

The role of histone modifications in transcription remains incompletely understood. Here, we examine the relationship between histone modifications and transcription using experimental perturbations combined with sensitive machine-learning tools. Transcription predicted the variation in active histone marks and complex chromatin states, like bivalent promoters, down to single-nucleosome resolution and at an accuracy that rivaled the correspondence between independent ChIP-seq experiments. Blocking transcription rapidly removed two punctate marks, H3K4me3 and H3K27ac, from chromatin indicating that transcription is required for active histone modifications. Transcription was also required for maintenance of H3K27me3, consistent with a role for RNA in recruiting PRC2. A subset of DNase-I-hypersensitive sites were refractory to prediction, precluding models where transcription initiates pervasively at any open chromatin. Our results, in combination with past literature, support a model in which active histone modifications serve a supportive, rather than an essential regulatory, role in transcription.


Subject(s)
Histones , Protein Processing, Post-Translational , Chromatin/genetics , Histone Code/genetics , Histones/genetics , Histones/metabolism , Nucleosomes/genetics , Protein Processing, Post-Translational/genetics
7.
Nat Commun ; 12(1): 6590, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34782625

ABSTRACT

The advent of animal husbandry and hunting increased human exposure to zoonotic pathogens. To understand how a zoonotic disease may have influenced human evolution, we study changes in human expression of anthrax toxin receptor 2 (ANTXR2), which encodes a cell surface protein necessary for Bacillus anthracis virulence toxins to cause anthrax disease. In immune cells, ANTXR2 is 8-fold down-regulated in all available human samples compared to non-human primates, indicating regulatory changes early in the evolution of modern humans. We also observe multiple genetic signatures consistent with recent positive selection driving a European-specific decrease in ANTXR2 expression in multiple tissues affected by anthrax toxins. Our observations fit a model in which humans adapted to anthrax disease following early ecological changes associated with hunting and scavenging, as well as a second period of adaptation after the rise of modern agriculture.


Subject(s)
Evolution, Molecular , Gene Expression Regulation , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Animals , Antigens, Bacterial , Bacillus anthracis/genetics , Bacterial Toxins , Cell Line , Down-Regulation , Humans , K562 Cells , Membrane Proteins/metabolism , Virulence , Zoonoses
8.
BMC Vet Res ; 16(1): 206, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32571313

ABSTRACT

BACKGROUND: Canine visceral hemangiosarcoma (HSA) is a highly aggressive cancer of endothelial origin that closely resembles visceral angiosarcoma in humans, both clinically and histopathologically. Currently there is an unmet need for new diagnostics and therapies for both forms of this disease. The goal of this study was to utilize Chromatin run-on sequencing (ChRO-seq) and immunohistochemistry (IHC) to identify gene and protein expression signatures that may be important drivers of HSA progression. RESULTS: ChRO-seq was performed on tissue isolated from 17 HSA samples and 4 normal splenic samples. Computational analysis was then used to identify differentially expressed genes and these factors were subjected to gene ontology analysis. ChRO-seq analysis revealed over a thousand differentially expressed genes in HSA tissue compared with normal splenic tissue (FDR < 0.005). Interestingly, the majority of genes overexpressed in HSA tumor tissue were associated with extracellular matrix (ECM) remodeling. This observation correlated well with our histological analysis, which found that HSA tumors contain a rich and complex collagen network. Additionally, we characterized the protein expression patterns of two highly overexpressed molecules identified in ChRO-seq analysis, podoplanin (PDPN) and laminin alpha 4 (LAMA4). We found that the expression of these two ECM-associated factors appeared to be largely limited to transformed endothelial cells within the HSA lesions. CONCLUSION: Outcomes from this study suggest that ECM remodeling plays an important role in HSA progression. Additionally, our study identified two potential novel biomarkers of HSA, PDPN and LAMA4. Interestingly, given that function-blocking anti-PDPN antibodies have shown anti-tumor effects in mouse models of canine melanoma, our studies raise the possibility that these types of therapeutic strategies could potentially be developed for treating canine HSA.


Subject(s)
Dog Diseases/pathology , Extracellular Matrix/pathology , Hemangiosarcoma/veterinary , Splenic Neoplasms/veterinary , Animals , Biomarkers, Tumor , Chromatin/genetics , Chromatin/metabolism , Chromosome Mapping , Dogs , Gene Expression Regulation, Neoplastic , Gene Ontology , Hemangiosarcoma/genetics , Hemangiosarcoma/metabolism , Membrane Glycoproteins/metabolism , Spleen/metabolism , Splenic Neoplasms/genetics , Splenic Neoplasms/metabolism
9.
Genome Res ; 29(2): 293-303, 2019 02.
Article in English | MEDLINE | ID: mdl-30573452

ABSTRACT

Our genomes encode a wealth of transcription initiation regions (TIRs) that can be identified by their distinctive patterns of actively elongating RNA polymerase. We previously introduced dREG to identify TIRs using PRO-seq data. Here, we introduce an efficient new implementation of dREG that uses PRO-seq data to identify both uni- and bidirectionally transcribed TIRs with 70% improvement in accuracy, three- to fourfold higher resolution, and >100-fold increases in computational efficiency. Using a novel strategy to identify TIRs based on their statistical confidence reveals extensive overlap with orthogonal assays, yet also reveals thousands of additional weakly transcribed TIRs that were not identified by H3K27ac ChIP-seq or DNase-seq. Novel TIRs discovered by dREG were often associated with RNA polymerase III initiation, bound by pioneer transcription factors, or located in broad domains marked by repressive chromatin modifications. Our results suggest that transcription initiation can be a powerful tool for expanding the catalog of functional elements.


Subject(s)
Regulatory Elements, Transcriptional , Software , Transcription Initiation, Genetic , Genomics , Heterochromatin/chemistry , Internet , Machine Learning , RNA Polymerase III/metabolism , Sequence Analysis, DNA , Transcription Factors/metabolism
10.
Nat Ecol Evol ; 2(3): 537-548, 2018 03.
Article in English | MEDLINE | ID: mdl-29379187

ABSTRACT

How evolutionary changes at enhancers affect the transcription of target genes remains an important open question. Previous comparative studies of gene expression have largely measured the abundance of messenger RNA, which is affected by post-transcriptional regulatory processes, hence limiting inferences about the mechanisms underlying expression differences. Here, we directly measured nascent transcription in primate species, allowing us to separate transcription from post-transcriptional regulation. We used precision run-on and sequencing to map RNA polymerases in resting and activated CD4+ T cells in multiple human, chimpanzee and rhesus macaque individuals, with rodents as outgroups. We observed general conservation in coding and non-coding transcription, punctuated by numerous differences between species, particularly at distal enhancers and non-coding RNAs. Genes regulated by larger numbers of enhancers are more frequently transcribed at evolutionarily stable levels, despite reduced conservation at individual enhancers. Adaptive nucleotide substitutions are associated with lineage-specific transcription and at one locus, SGPP2, we predict and experimentally validate that multiple substitutions contribute to human-specific transcription. Collectively, our findings suggest a pervasive role for evolutionary compensation across ensembles of enhancers that jointly regulate target genes.


Subject(s)
Macaca mulatta/genetics , Pan troglodytes/genetics , Regulatory Elements, Transcriptional , T-Lymphocytes/metabolism , Transcription, Genetic , Animals , Gene Expression , Humans , Macaca mulatta/metabolism , Male , Pan troglodytes/metabolism
11.
Nat Genet ; 48(8): 822-3, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27463395

ABSTRACT

A new study tracks the distribution of bivalent H3K4me3/H3K27me3 chromatin in male germ cells of six vertebrate species. The results have big implications for understanding the mechanisms that specify animal development.


Subject(s)
Chromatin , Histones/genetics , Animals , Germ Cells , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...