Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Cancer Res ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101835

ABSTRACT

PURPOSE: Clinical efficacy of CAR T cells against pediatric osteosarcoma (OS) has been limited. One strategy to improve efficacy may be to drive chemokine-mediated homing of CAR T cells to tumors. We investigated the primary chemokines secreted by OS and evaluated efficacy of B7-H3.CAR T cells expressing the cognate receptors. EXPERIMENTAL DESIGN: We developed a pipeline to identify chemokines secreted by OS by correlating RNA-seq data with chemokines detected in media from fresh surgical specimens. We identified CXCR2 and CXCR6 as promising receptors for enhancing CAR T cell homing against OS. We evaluated the homing kinetics and efficiency of CXCR2- and CXCR6.T cells and homing, cytokine production, and antitumor activity of CXCR2- and CXCR6.B7-H3.CAR T cells in vitro and in vivo. RESULTS: T cells transgenically expressing CXCR2 or CXCR6 exhibited ligand-specific enhanced migration over T cells modified with nonfunctional receptors. Differential homing kinetics were observed, with CXCR2.T cells homing quickly and plateauing early, while CXCR6.T cells homed more slowly but achieved a similar plateau. When expressed in B7-H3.CAR T cells, CXCR2- and CXCR6 modification conferred enhanced homing towards OS in vitro and in vivo. CXCR2- and CXCR6-B7-H3.CAR treated mice experienced prolonged survival in a metastatic model compared to B7-H3.CAR T cell treated mice. CONCLUSIONS: Our patient-based pipeline identified targets for chemokine receptor modification of CAR T cells targeting OS. CXCR2 and CXCR6 expression enhanced homing and anti-OS activity of B7-H3.CAR T cells. These findings support clinical evaluation of CXCR-modified CAR T cells to improve adoptive cell therapy for OS patients.

2.
Cell Rep Med ; 5(2): 101422, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38350450

ABSTRACT

The emergence of immune escape is a significant roadblock to developing effective chimeric antigen receptor (CAR) T cell therapies against hematological malignancies, including acute myeloid leukemia (AML). Here, we demonstrate feasibility of targeting two antigens simultaneously by combining a GRP78-specific peptide antigen recognition domain with a CD123-specific scFv to generate a peptide-scFv bispecific antigen recognition domain (78.123). To achieve this, we test linkers with varying length and flexibility and perform immunophenotypic and functional characterization. We demonstrate that bispecific CAR T cells successfully recognize and kill tumor cells that express GRP78, CD123, or both antigens and have improved antitumor activity compared to their monospecific counterparts when both antigens are expressed. Protein structure prediction suggests that linker length and compactness influence the functionality of the generated bispecific CARs. Thus, we present a bispecific CAR design strategy to prevent immune escape in AML that can be extended to other peptide-scFv combinations.


Subject(s)
Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Humans , T-Lymphocytes , Interleukin-3 Receptor alpha Subunit/metabolism , Endoplasmic Reticulum Chaperone BiP , Receptors, Chimeric Antigen/metabolism , Leukemia, Myeloid, Acute/pathology
3.
Nat Biotechnol ; 41(10): 1434-1445, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36732477

ABSTRACT

Chimeric antigen receptor (CAR) technologies have been clinically implemented for the treatment of hematological malignancies; however, solid tumors remain resilient to CAR therapeutics. Natural killer (NK) cells may provide an optimal class of immune cells for CAR-based approaches due to their inherent anti-tumor functionality. In this study, we sought to tune CAR immune synapses by adding an intracellular scaffolding protein binding site to the CAR. We employ a PDZ binding motif (PDZbm) that enables additional scaffolding crosslinks that enhance synapse formation and NK CAR cell polarization. Combined effects of this CAR design result in increased effector cell functionality in vitro and in vivo. Additionally, we used T cells and observed similar global enhancements in effector function. Synapse-tuned CAR immune cells exhibit amplified synaptic strength, number and abundance of secreted cytokines, enhanced killing of tumor cells and prolonged survival in numerous different tumor models, including solid tumors.

4.
Blood ; 140(25): 2684-2696, 2022 12 22.
Article in English | MEDLINE | ID: mdl-35914226

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy targeting T-cell acute lymphoblastic leukemia (T-ALL) faces limitations such as antigen selection and limited T-cell persistence. CD7 is an attractive antigen for targeting T-ALL, but overlapping expression on healthy T cells leads to fratricide of CD7-CAR T cells, requiring additional genetic modification. We took advantage of naturally occurring CD7- T cells to generate CD7-CAR (CD7-CARCD7-) T cells. CD7-CARCD7- T cells exhibited a predominantly CD4+ memory phenotype and had significant antitumor activity upon chronic antigen exposure in vitro and in xenograft mouse models. Based on these encouraging results, we next explored the utility of CD7- T cells for the immunotherapy of CD19+ hematological malignancies. Direct comparison of nonselected (bulk) CD19-CAR and CD19-CARCD7- T cells revealed that CD19-CARCD7- T cells had enhanced antitumor activity compared with their bulk counterparts in vitro and in vivo. Lastly, to gain insight into the behavior of CD19-CAR T cells with low levels of CD7 gene expression (CD7lo) in humans, we mined single-cell gene and T-cell receptor (TCR) expression data sets from our institutional CD19-CAR T-cell clinical study. CD19-CARCD7lo T cells were present in the initial CD19-CAR T-cell product and could be detected postinfusion. Intriguingly, the only functional CD4+ CD19-CAR T-cell cluster observed postinfusion exhibited CD7lo expression. Additionally, samples from patients responsive to therapy had a higher proportion of CD7lo T cells than nonresponders (NCT03573700). Thus, CARCD7- T cells have favorable biological characteristics and may present a promising T-cell subset for adoptive cell therapy of T-ALL and other hematological malignancies.


Subject(s)
Hematologic Neoplasms , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Mice , Animals , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptors, Antigen, T-Cell , Immunotherapy, Adoptive , Hematologic Neoplasms/therapy , Immunotherapy , Antigens, CD19
5.
J Clin Invest ; 128(4): 1384-1396, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29324443

ABSTRACT

During epithelial-mesenchymal transition (EMT) epithelial cancer cells transdifferentiate into highly motile, invasive, mesenchymal-like cells, giving rise to disseminating tumor cells. Few of these disseminated cells successfully metastasize. Immune cells and inflammation in the tumor microenvironment were shown to drive EMT, but few studies investigated the consequences of EMT for tumor immunosurveillance. In addition to initiating metastasis, we demonstrate that EMT confers increased susceptibility to natural killer (NK) cells and contributes, in part, to the inefficiency of the metastatic process. Depletion of NK cells allowed spontaneous metastasis without affecting primary tumor growth. EMT-induced modulation of E-cadherin and cell adhesion molecule 1 (CADM1) mediated increased susceptibility to NK cytotoxicity. Higher CADM1 expression correlates with improved patient survival in 2 lung and 1 breast adenocarcinoma patient cohorts and decreased metastasis. Our observations reveal a novel NK-mediated, metastasis-specific immunosurveillance in lung cancer and present a window of opportunity for preventing metastasis by boosting NK cell activity.


Subject(s)
Carcinoma, Lewis Lung/immunology , Epithelial-Mesenchymal Transition/immunology , Immunity, Cellular , Immunologic Surveillance , Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Tumor Microenvironment/immunology , A549 Cells , Animals , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/pathology , Cell Adhesion Molecule-1/genetics , Cell Adhesion Molecule-1/immunology , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Killer Cells, Natural/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Mice , Mice, Knockout , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology
6.
J Immunol ; 197(3): 691-8, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27431984

ABSTRACT

Microenvironments that tumor cells encounter are different during the stages of cancer progression-primary tumor, metastasis, and at the metastatic site. This suggests potential differences in immune surveillance of primary tumor and metastasis. Epithelial-mesenchymal transition (EMT) is a key reversible process in which cancer cells transition into highly motile and invasive cells for dissemination. Only a tiny proportion successfully metastasize, supporting the notion of metastasis-specific immune surveillance. EMT involves extensive molecular reprogramming of cells conferring many clinically relevant features to cancer cells and affects tumor cell interactions within the tumor microenvironment. We review the impact of tumor immune infiltrates on tumor cell EMT and the consequences of EMT in shaping the immune microenvironment of tumors. The usefulness of EMT as a model to investigate metastasis-specific immune surveillance mechanisms are also explored. Finally, we discuss potential implications of EMT for tumor immunogenicity, as well as current immunotherapies and future strategies.


Subject(s)
Epithelial-Mesenchymal Transition/immunology , Neoplasms/pathology , Tumor Escape/immunology , Tumor Microenvironment/immunology , Animals , Disease Progression , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL