Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 948648, 2022.
Article in English | MEDLINE | ID: mdl-35991461

ABSTRACT

Tree thinning affects the light environment, which in turn affects the growth and survival of understory vegetation, thus improving species diversity and nutrient cycling, as well as the ecological habitat factors. However, the response of understory vegetation to the thinning intensity and short-time effects in the temperate broadleaf-conifer mixed forest is not completely clear. In this study, four permanent plots with a total area of 4 hm2 were established in a mixed broadleaf-conifer forest in northeast China, with thinning intensities of 20% (light thinning, LT), 35% (medium thinning, MT), 55% (heavy thinning, HT) and the unthinned plot (CK), respectively, in accordance with the basal area. The responses of species diversity to changes in understory vegetation were conducted by a structural equation model (SEM). The results showed that compared with CK, thinning significantly increased the photosynthetically active radiation (PAR) and the light quality (R/FR) (p < 0.05), while decreased the contents of soil total nitrogen (TN), total phosphorous (TP), organic matter (OM), nitrate nitrogen (NN), ammonia nitrogen (AN) and pH. The degree of fragmentation of light factors among the treatment plots gradually decreased as thinning intensity increased. Among all the thinning treatments, PAR and R/FR were found to be the optimal light condition when the forest thinning intensity was 55%. The light condition was found to have a significant negative correlation with soil TN, TP, OM, and AN. While the soil nutrients were positively correlated with herbaceous layer diversity but negatively correlated with shrub layer diversity. The soil nutrients were lost after thinning in a short time and herb diversity decreased, but shrub diversity increased significantly compared with unthinned plots. For the understory vegetation, the species diversity of shrub and herb layer were showed to be more sensitive to soil nutrients than light environment.

2.
Dalton Trans ; 44(19): 9182-92, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25904197

ABSTRACT

Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al(3+) to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-µ-oxo-bridged diamond core, Mn(III)-(µ-O)2-Mn(IV). The presence of a Lewis acid like Al(3+) causes the dissociation of this diamond Mn(III)-(µ-O)2-Mn(IV) core to form monomeric manganese(iv) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-µ-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate.


Subject(s)
Aluminum/chemistry , Epoxy Compounds/chemical synthesis , Manganese/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Alkenes/chemistry , Catalysis , Epoxy Compounds/chemistry , Ions/chemistry , Lewis Acids/chemistry , Ligands , Molecular Structure , Oxidation-Reduction
3.
Chem Commun (Camb) ; 51(10): 1874-7, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25525748

ABSTRACT

This work demonstrates that non-redox metal ions as Lewis acids can sharply improve the oxygen transfer efficiency of a manganese(II) catalyst having a non-heme ligand. In the absence of Lewis acid, oxidation of a manganese(II) complex will generate the known di-µ-oxo-bridged dinuclear Mn2(III,IV) core which is very sluggish for olefin epoxidation. Adding non-redox metal ions causes the dissociation of the dinuclear core, leading to sharp improvement in its oxygen transfer efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL