Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Dev Reprod ; 27(3): 137-147, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38074460

ABSTRACT

Pharyngeal pouches are an important epithelial structure controlling facial skeletal development in vertebrates. A series of pouches arise sequentially in the pharyngeal endoderm through collective cell migration followed by rearrangement of pouch-forming cells. While crucial transcription factors and signaling molecules have been identified in pouch formation, a role for Neuropilins (Nrps) in pouch development has not yet been analyzed in any vertebrates. Nrps are cell surface receptors essential for angiogenesis and axon guidance. In all vertebrates, the two Nrp family members, Nrp1 and Nrp2, are conserved in the genome, with two paralogs for Nrp1 (Nrp1a and Nrp1b) and Nrp2 (Nrp2a and Nrp2b) being identified in zebrafish. Here, I report a potential requirement of Nrp signaling in pouch development in zebrafish. nrp1a and nrp2b were expressed in the developing pouches, with sema3d, a ligand for Nrps, being expressed in the pouches. Knocking down Nrps signaling in the pharyngeal endoderm led to severe defects in pouches and facial cartilages. In addition, blocking Mitogen-activated protein kinase (MAPK) activities, a downstream effector of Nrp signaling, in the pharyngeal endoderm caused similar defects in pouches and facial skeleton to those by knocking down Nrps signaling. My results suggest that Nrp signaling acts for pouch formation through MAPK.

2.
Gene Expr Patterns ; 45: 119262, 2022 09.
Article in English | MEDLINE | ID: mdl-35811016

ABSTRACT

Inka box actin regulator 1 (Inka1) is a novel protein identified in Xenopus and is found in vertebrates. While Inka1 is required for facial skeletal development in Xenopus and zebrafish, it is dispensable in mice despite its conserved expression in the cranial neural crest, indicating that Inka1 function in facial skeletal development is not conserved among vertebrates. Zebrafish bears two paralogs of inka1 (inka1a and inka1b) in the genome, with the biological roles of inka1b barely known. Here, we analyzed the expression and function of inka1b during facial skeletal development in zebrafish. inka1b was expressed sequentially in the head mesoderm adjacent to the pharyngeal pouches essential for facial skeletal development at the stage of arch segmentation. However, a loss-of-function mutation in inka1b displayed normal head development, including the pouches and facial cartilages. The normal head of inka1b mutant fish was unlikely a result of the genetic redundancy of inka1b with inka1a, given the distinct expression of inka1a and inka1b in the cranial neural crest and head mesoderm, respectively, during craniofacial development. Our findings suggest that the inka1b expression in the head mesoderm might not be essential for head development in zebrafish.


Subject(s)
Neural Crest , Zebrafish , Animals , Cartilage/metabolism , Gene Expression Regulation, Developmental , Mesoderm/metabolism , Mice , Neural Crest/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
3.
Dev Reprod ; 26(1): 23-36, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35528320

ABSTRACT

Pharyngeal pouches, a series of outgrowths of the pharyngeal endoderm, are a key epithelial structure governing facial skeleton development in vertebrates. Pouch formation is achieved through collective cell migration and rearrangement of pouch-forming cells controlled by actin cytoskeleton dynamics. While essential transcription factors and signaling molecules have been identified in pouch formation, regulators of actin cytoskeleton dynamics have not been reported yet in any vertebrates. Cofilin1-like (Cfl1l) is a fish-specific member of the Actin-depolymerizing factor (ADF)/Cofilin family, a critical regulator of actin cytoskeleton dynamics in eukaryotic cells. Here, we report the expression and function of cfl1l in pouch development in zebrafish. We first showed that fish cfl1l might be an ortholog of vertebrate adf, based on phylogenetic analysis of vertebrate adf and cfl genes. During pouch formation, cfl1l was expressed sequentially in the developing pouches but not in the posterior cell mass in which future pouch-forming cells are present. However, pouches, as well as facial cartilages whose development is dependent upon pouch formation, were unaffected by loss-of-function mutations in cfl1l. Although it could not be completely ruled out a possibility of a genetic redundancy of Cfl1l with other Cfls, our results suggest that the cfl1l expression in the developing pouches might be dispensable for regulating actin cytoskeleton dynamics in pouch-forming cells.

4.
Anim Cells Syst (Seoul) ; 25(5): 255-263, 2021.
Article in English | MEDLINE | ID: mdl-34745432

ABSTRACT

Epidermal growth factor-like domain multiple 6 (Egfl6) is a basement membrane protein and plays an important role in hair follicle morphogenesis, angiogenesis, notochord development in vertebrates. Although egfl6 expression in the developing head was observed in zebrafish, its role for craniofacial development and the determination of the pharyngeal region expressing egfl6, have not been reported yet. Here, we report the expression patterns and function of egfl6 in craniofacial development in zebrafish. egfl6 was expressed sequentially in the developing pharyngeal pouches that are key epithelial structures governing the development of the vertebrate head. However, loss-of-function mutations in egfl6 did not cause any craniofacial defects, including the pouches as well as the thymus and facial cartilages whose development is contingent upon appropriate pouch formation. egfl6 was unlikely redundant with egfl7 expressed in a distinct pharyngeal region from that of egfl6 in craniofacial development because reduction of egfl7 with a MO in egfl6 mutants did not affect craniofacial development. In addition, we found that egfl6 carried an endogenous start loss mutation in the wild-type Tübingen strain, implying egfl6 would be a non-functional gene. Taken all together, we suggest that egfl6 expression in the pharyngeal pouches is not required for craniofacial development in zebrafish.

5.
Sci Rep ; 11(1): 23005, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34837012

ABSTRACT

The mechanism of nonalcoholic fatty liver disease (NAFLD) has not been completely revealed. In this study, we investigated the association of liver histological changes and long noncoding RNAs (lncRNAs) in the NAFLD zebrafish model. Forty zebrafish were fed a high-cholesterol diet (1.5 g per day) for 8 weeks. We measured fatty liver changes in the zebrafish liver using oil red O staining and divided them into two groups based on high and low scores. We pooled each group of zebrafish livers and identified lncRNAs, miRNAs, and mRNAs using Next-generation sequencing. Human homologs of lncRNAs were identified using ZFLNC, Ensembl, and NONCODE. We found several significant genes, including 32 lncRNAs, 5 miRNA genes, and 8 protein-coding genes, that were associated with liver metabolism and NAFLD-related functions in zebrafish. In particular, eight conserved human homologs of lncRNAs were found. We discovered the human homologs of eight lncRNA candidates from fatty liver zebrafish for the first time. The spectrum of biological mechanisms by which lncRNAs mediate their functional roles in NAFLD in a high cholesterol diet adult zebrafish model remains to be uncovered.


Subject(s)
Cholesterol, Dietary/adverse effects , Non-alcoholic Fatty Liver Disease/genetics , RNA, Long Noncoding/genetics , Animals , Disease Models, Animal , Humans , Liver/metabolism , Liver/pathology , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Transcriptome , Zebrafish/genetics
6.
Lab Anim Res ; 37(1): 26, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34496973

ABSTRACT

Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.

7.
Gene Expr Patterns ; 41: 119202, 2021 09.
Article in English | MEDLINE | ID: mdl-34389512

ABSTRACT

Nanos proteins are essential for developing primordial germ cells (PGCs) in both invertebrates and vertebrates. In invertebrates, also contribute to the patterning of the anterior-posterior axis of the embryo and the neural development. In vertebrates, however, besides the role of Nanos proteins in PGC development, the biological functions of the proteins in normal development have not yet been identified. Here, we analyzed the expression and function of nanos1 during craniofacial development in zebrafish. nanos1 was expressed in the pharyngeal endoderm and endodermal pouches essential for the development of facial skeletons and endocrine glands in the vertebrate head. However, no craniofacial defects, such as abnormal pouches, hypoplasia of the thymus, malformed facial skeletons, have been found in nanos1 knockout animals. The normal craniofacial development of nanos1 knockout animals is unlikely a consequence of the genetic redundancy of Nanos1 with Nanos2 or Nanos3 or a result of the genetic compensation for the loss of Nanos1 by Nanos2 or Nanos3 because the expression of nanos2 and nanos3 was rarely seen in the pharyngeal endoderm and endodermal pouches in wild-type and nanos1 mutant animals during craniofacial development. Our findings suggest that nanos1 expression in the pharyngeal endoderm might be dispensable for craniofacial development in zebrafish.


Subject(s)
Endoderm , Zebrafish , Animals , Animals, Genetically Modified , Gene Expression Regulation, Developmental , Germ Cells , Pharynx , Zebrafish/genetics
8.
Dev Biol ; 465(1): 58-65, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32687895

ABSTRACT

While pair-rule patterning has been observed in most insects examined, the orthologs of Drosophila pair-rule genes have shown divergent roles in insect segmentation. In the beetle Tribolium castaneum, while odd-skipped (Tc-odd) was expressed as a series of pair-rule stripes, RNAi-mediated knockdown of Tc-odd (Tc-oddRNAi) resulted in severely truncated, almost asegmental phenotypes rather than the classical pair-rule phenotypes observed in germbands and larval cuticles. However, considering that most segments arise later in germband stages of Tribolium development, the roles of Tc-odd in segmentation of growing germbands could not be analyzed properly in the truncated Tc-oddRNAi germbands. Here, we investigated the segmentation function of Tc-odd in germband stages of Tribolium development by analyzing Tc-oddRNAi embryos that resumed germband extension. In the larval cuticles of Tc-oddRNAi embryos, normal mandibular and maxillary and loss of the labial segments were consistent in the head, whereas a broad range of segmentation defects including loss or fusion of thoracic and/or abdominal segments was observed in the trunk. Interestingly, a group of Tc-oddRNAi germbands showed pair-rule-like defects in the segmental stripes of the segment-polarity genes, engrailed, hedgehog, or wingless, in the abdominal regions. While the pair-rule genes even-skipped, runt, odd, and paired were misregulated in the growing Tc-oddRNAi germbands, paired expression required for odd-numbered segment formation was largely abolished, which might cause the pair-rule-like defects. Taken together, these findings suggest that Tc-odd can function as a pair-rule gene in the germband stages of Tribolium development.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Insect Proteins/metabolism , Tribolium/embryology , Animals , Insect Proteins/genetics , Larva/genetics , Larva/growth & development , Tribolium/genetics
9.
Dev Biol ; 462(1): 1-6, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32179089

ABSTRACT

The pair-rule gene even-skipped (eve) is essential for insect segmentation, yet its function varies among insect clades. While loss of eve results in typical pair-rule phenotypes in Drosophila, knock-down of eve orthologs shows segmental, gap-like, or asegmental phenotypes in non-Drosophila insects. In Tribolium, knock-down of the eve ortholog (Tc-eve) resulted in a graded phenotypic series ranging from strong to weak, the most informative of which was intermediate phenotypes. The strong knock-down embryos displayed asegmental phenotypes and severely disorganized germ bands which have prevented determination of Tc-eve function in later stages. In order to understand the segmentation function of Tc-eve during later germ band elongation stages, we analyzed intermediate Tc-eveRNAi embryos in which germ band elongation was less affected. Most intermediate Tc-eveRNAi germ bands displayed segmentation defects with a double segmental periodicity in the abdomen. In these intermediate embryos, Tc-engrailed (Tc-en) stripes were ectopically expanded into large bands with a double segmental periodicity, while the remaining Tc-en stripes between the expanded Tc-en stripes were absent or barely formed. The expanded Tc-en stripes seemed to be activated by primary Tc-eve stripes and Tc-paired, both of which failed to resolve into secondary segmental stripes. The absence of Tc-en stripes appeared to be a consequence of the absence of the secondary stripes of Tc-runt that were required for the activation of Tc-en stripes. These results suggest that Tc-eve functions as a pair-rule gene at least in the germ band stages of Tribolium development.


Subject(s)
Body Patterning/genetics , Tribolium/embryology , Tribolium/genetics , Amino Acid Sequence/genetics , Animals , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental/genetics , Genes, Insect/genetics , Insect Proteins/genetics , Transcription Factors/metabolism
10.
Mech Dev ; 161: 103594, 2020 03.
Article in English | MEDLINE | ID: mdl-31778794

ABSTRACT

The segment-polarity gene engrailed is required for segmentation in the early Drosophila embryo. Loss of Engrailed function results in segmentation defects that vary in severity from pair-rule phenotypes to a lawn phenotype lacking in obvious of segmentation. During segmentation, Engrailed is expressed in stripes with a single segmental periodicity in Drosophila, which is conserved in all arthropods examined so far. To define segments, the segmental stripes of Engrailed induce the segmental stripes of wingless at each parasegmental boundary. However, segmentation functions of orthologs of engrailed in non-Drosophila arthropods have yet to be reported. Here, we analyzed functions of the Tribolium ortholog of engrailed (Tc-engrailed) during embryonic segmentation. Larval cuticles with Tc-engrailed being knocked down had segmentation phenotypes including incomplete segment formation and loss of a group of segments. In agreement with the cuticle segmentation defects, segments developed incompletely and irregularly or did not form in Tribolium germbands where Tc-engrailed was knocked down. Furthermore, knock-down of Tc-engrailed did not properly express the segmental stripes of wingless in Tribolium germbands. Taken together with the conserved expression patterns of Engrailed in arthropod segmentation, our data suggest that Tc-engrailed is required for embryonic segmentation in Tribolium, and the genetic mechanism of Engrailed inducing wingless expression is conserved at least between Drosophila and Tribolium.


Subject(s)
Tribolium/embryology , Animals , Arthropods/embryology , Arthropods/genetics , Body Patterning/genetics , Drosophila/embryology , Drosophila/genetics , Drosophila Proteins/genetics , Gene Expression Regulation, Developmental/genetics , Genes, Insect/genetics , Phenotype , Tribolium/genetics
11.
Dev Reprod ; 23(1): 63-72, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31049473

ABSTRACT

Thehead gap gene buttonhead (btd) is required for the patterning of head segments in the early Drosophila embryo. Mutant phenotypes of btd display a gap-like phenotype in which antennal, intercalary, mandibular and the anterior portion of the maxillary segmentsare eliminated. In agreement with the phenotypes, btd is expressed in a stripe covering the head segments at the blastoderm stage. During the early phase of the germband extension, btd is expressed in stripes with single segmental periodicity, which is required for the formation of the peripheral nervous system. In contrast to the key role of btd in Drosophila embryonic development, it has been suggested that Tribolium ortholog of btd (Tc-btd) is dispensable for embryonic head development. In order for better understanding of the requirement of Tc-btd in the early Tribolium embryo, we re-analyzed the expression patterns and functions of Tc-btd during embryonic segmentation. Tc-btd is expressed in segmental stripes at the stages of blastoderm and germband elongation. Up to 28.3% of embryos in which Tc-btd is knocked down displays the loss of antennal, mandibular and the pregnathal regions in the head, with abdominal segments being disrupted in the trunk. Our findings suggest that Tc-btd is required for the head and trunk development in the early Tribolium embryo.

12.
Gene Expr Patterns ; 31: 26-31, 2019 01.
Article in English | MEDLINE | ID: mdl-30630105

ABSTRACT

The pair-rule gene teneurin-m/odd Oz (ten-m/odz) is required for the patterning of alternate segment boundaries in the early Drosophila embryo. Mutant phenotypes of ten-m/odz display a typical pair-rule phenotype in which odd-numbered segments are eliminated. Consistent with its pair-rule function, Ten-m/Odz protein is expressed in a seven-stripe pattern before the onset of gastrulation. While expression of ten-m/odz orthologues have been characterized in several vertebrate species, their expression patterns in non-Drosophila arthropods during embryonic segmentation have yet to be reported. Here, we have identified a Tribolium orthologue of ten-m/odz (Tc-ten-m/odz) and analyzed its expression patterns during embryonic segmentation. Tc-ten-m/odz expression was observed in a region of the growth zone, which appeared to be a potential mesodermal region, during germband elongation. Later, segmental expression appeared in the trunk after segments had already formed. In contrast to Drosophila, apparently Tc-ten-m/odz was neither expressed in the ectoderm of the growth zone where segmentation occurs, nor the ectoderm of trunk regions where segmentation is maintained. Our findings suggest that Tc-ten-m/odz may not function as a pair rule gene in Tribolium segmentation.


Subject(s)
Body Patterning , Insect Proteins/genetics , Tenascin/genetics , Tribolium/genetics , Animals , Ectoderm/metabolism , Gene Expression Regulation, Developmental , Insect Proteins/metabolism , Mesoderm/metabolism , Tenascin/metabolism , Tribolium/embryology
13.
Dev Biol ; 441(1): 12-18, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29932895

ABSTRACT

The pharyngeal pouches are a series of epithelial outgrowths of the foregut endoderm. Pharyngeal pouches segment precursors of the vertebrate face into pharyngeal arches and pattern the facial skeleton. These pouches fail to develop normally in zebrafish foxi1 mutants, yet the role Foxi1 plays in pouch development remains to be determined. Here we show that ectodermal Foxi1 acts downstream of Fgf8a during the late stage of pouch development to promote rearrangement of pouch-forming cells into bilayers. During this phase, foxi1 and wnt4a are coexpressed in the facial ectoderm and their expression is expanded in fgf8a mutants. foxi1 expression is unaffected in wnt4a mutants; conversely, ectodermal wnt4a expression is abolished in foxi1 mutants. Consistent with this, foxi1 mutant pouch and facial skeletal defects resemble those of wnt4a mutants. These findings suggest that ectodermal Foxi1 mediates late-stage pouch morphogenesis through wnt4a expression. We therefore propose that Fox1 activation of Wnt4a in the ectoderm signals the epithelial stabilization of pouch-forming cells during late-stage of pouch morphogenesis.


Subject(s)
Ectoderm/embryology , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental/physiology , Organogenesis/physiology , Pharynx/embryology , Wnt4 Protein/biosynthesis , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Forkhead Transcription Factors/genetics , Mutation , Wnt Signaling Pathway/physiology , Wnt4 Protein/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
14.
Dev Genes Evol ; 227(5): 309-317, 2017 09.
Article in English | MEDLINE | ID: mdl-28791475

ABSTRACT

The pair-rule gene odd-paired (opa) is required for the patterning of alternate segment boundaries in the early Drosophila embryo. Mutant phenotypes of opa display a typical pair-rule phenotype in which most of each odd-numbered denticle belt is eliminated. However, among the nine Drosophila pair-rule genes, opa is the only gene that is not expressed in stripes with double segmental periodicity; its transcript and protein are expressed in a broad domain within segmenting embryos. While expression patterns of orthologs of opa have been analyzed in several arthropod species, their regulation and function in segmentation were largely unknown. Here, we analyzed the expression patterns, regulation, and function of the Tribolium ortholog of opa (Tc-opa). Tc-opa is expressed in segmental stripes in the early stages of segmentation and then is expressed in a broad domain at the growth zone of elongating germbands where new segments form. This broad expression of Tc-opa is processed into segmental stripes once the trunk has become segmented. Tc-opa expression is regulated positively and negatively by even-skipped and odd-skipped, respectively. However, knock-down of Tc-opa does not affect embryonic segmentation. Our findings suggest that Tc-opa expression is regulated by the pair-rule gene network even though its requirement for segmentation is uncertain in Tribolium.


Subject(s)
Body Patterning , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Tribolium/genetics , Amino Acid Sequence , Animals , Embryo, Nonmammalian/cytology , Insect Proteins/genetics , Insect Proteins/metabolism , Phylogeny , Sequence Homology , Tribolium/embryology , Tribolium/physiology
15.
Development ; 142(6): 1089-94, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25725065

ABSTRACT

Branching morphogenesis depends on the precise temporal and spatial control of epithelial dynamics. In the vertebrate head, endodermal branches, called pharyngeal pouches, form through the transient stratification, collective migration and reorganization of epithelial cells into bilayers. Here, we report novel requirements for the EphrinB ligands B2a and B3b, the Ephb4a receptor and the Pak2a kinase in the development of pouches and the posterior facial skeleton that depends on pouches for its segmentation. Time-lapse imaging in zebrafish shows that EphB-Pak2a signaling is required to stabilize pouch epithelial cells at the end of branching morphogenesis. Transgenic rescue experiments further demonstrate that endodermal Eph-ephrin signaling promotes pouch integrity by targeting Pak2a to the plasma membrane, where subsequent activation by Wnt4a-Cdc42 signaling increases junctional E-cadherin in maturing pouches. Integration of Eph-ephrin and Wnt4a signaling through Pak2a thus signals the end of branching morphogenesis by increasing intercellular adhesion that blocks further epithelial rearrangements.


Subject(s)
Branchial Region/embryology , Epithelial Cells/physiology , Morphogenesis/physiology , Protein Serine-Threonine Kinases/metabolism , Receptor, EphB4/metabolism , Signal Transduction/physiology , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Immunohistochemistry , In Situ Hybridization, Fluorescence , Microscopy, Confocal , Morpholinos/genetics , Signal Transduction/genetics , Time-Lapse Imaging
16.
Curr Opin Genet Dev ; 32: 66-72, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25748249

ABSTRACT

A segmental series of endoderm-derived pouch and ectoderm-derived cleft epithelia act as signaling centers in the developing face. Their precise morphogenesis is therefore essential for proper patterning of the vertebrate head. Intercellular adhesion and polarity are highly dynamic within developing facial epithelial cells, with signaling from the adjacent mesenchyme controlling both epithelial character and directional migration. Endodermal and ectodermal epithelia fuse to form the primary mouth and gill slits, which involves basement membrane dissolution, cell intercalations, and apoptosis, as well as undergo further morphogenesis to generate the middle ear cavity and glands of the neck. Recent studies of facial epithelia are revealing both core programs of epithelial morphogenesis and insights into the coordinated assembly of the vertebrate head.


Subject(s)
Cell Movement/physiology , Cell Polarity/physiology , Epithelium/embryology , Face/embryology , Models, Biological , Morphogenesis/physiology , Signal Transduction/physiology , Vertebrates/embryology , Animals , Cell Adhesion/physiology , Species Specificity
17.
Development ; 141(18): 3583-93, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25142463

ABSTRACT

The pharyngeal pouches are a segmental series of epithelial structures that organize the embryonic vertebrate face. In mice and zebrafish that carry mutations in homologs of the DiGeorge syndrome gene TBX1, a lack of pouches correlates with severe craniofacial defects, yet how Tbx1 controls pouch development remains unclear. Using mutant and transgenic rescue experiments in zebrafish, we show that Tbx1 functions in the mesoderm to promote the morphogenesis of pouch-forming endoderm through wnt11r and fgf8a expression. Consistently, compound losses of wnt11r and fgf8a phenocopy tbx1 mutant pouch defects, and mesoderm-specific restoration of Wnt11r and Fgf8a rescues tbx1 mutant pouches. Time-lapse imaging further reveals that Fgf8a acts as a Wnt11r-dependent guidance cue for migrating pouch cells. We therefore propose a two-step model in which Tbx1 coordinates the Wnt-dependent epithelial destabilization of pouch-forming cells with their collective migration towards Fgf8a-expressing mesodermal guideposts.


Subject(s)
Epithelium/physiology , Fibroblast Growth Factors/metabolism , Mesoderm/metabolism , Organogenesis/physiology , Pharynx/embryology , T-Box Domain Proteins/metabolism , Wnt Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Movement/physiology , Models, Biological , T-Box Domain Proteins/genetics , Time-Lapse Imaging , Zebrafish , Zebrafish Proteins/genetics
18.
Dev Cell ; 24(3): 296-309, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23375584

ABSTRACT

The pharyngeal pouches, which form by budding of the foregut endoderm, are essential for segmentation of the vertebrate face. To date, the cellular mechanism and segmental nature of such budding have remained elusive. Here, we find that Wnt11r and Wnt4a from the head mesoderm and ectoderm, respectively, play distinct roles in the segmental formation of pouches in zebrafish. Time-lapse microscopy, combined with mutant and tissue-specific transgenic experiments, reveal requirements of Wnt signaling in two phases of endodermal epithelial transitions. Initially, Wnt11r and Rac1 destabilize the endodermal epithelium to promote the lateral movement of pouch-forming cells. Next, Wnt4a and Cdc42 signaling induce the rearrangement of maturing pouch cells into bilayers through junctional localization of the Alcama immunoglobulin-domain protein, which functions to restabilize adherens junctions. We propose that this dynamic control of epithelial morphology by Wnt signaling may be a common theme for the budding of organ anlagen from the endoderm.


Subject(s)
Body Patterning , Wnt Proteins , Wnt4 Protein , Zebrafish Proteins , Zebrafish , Adherens Junctions/metabolism , Animals , Body Patterning/genetics , Body Patterning/physiology , Embryonic Development , Epithelium/growth & development , Gene Expression Regulation, Developmental , Mesoderm/growth & development , Mesoderm/metabolism , Pharynx/growth & development , Pharynx/metabolism , Signal Transduction , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway , Wnt4 Protein/genetics , Wnt4 Protein/metabolism , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
19.
Dev Cell ; 23(1): 58-70, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22771034

ABSTRACT

Morphogenesis of the heart requires tight control of cardiac progenitor cell specification, expansion, and differentiation. Retinoic acid (RA) signaling restricts expansion of the second heart field (SHF), serving as an important morphogen in heart development. Here, we identify the LIM domain protein Ajuba as a crucial regulator of the SHF progenitor cell specification and expansion. Ajuba-deficient zebrafish embryos show an increased pool of Isl1(+) cardiac progenitors and, subsequently, dramatically increased numbers of cardiomyocytes at the arterial and venous poles. Furthermore, we show that Ajuba binds Isl1, represses its transcriptional activity, and is also required for autorepression of Isl1 expression in an RA-dependent manner. Lack of Ajuba abrogates the RA-dependent restriction of Isl1(+) cardiac cells. We conclude that Ajuba plays a central role in regulating the SHF during heart development by linking RA signaling to the function of Isl1, a key transcription factor in cardiac progenitor cells.


Subject(s)
Embryonic Stem Cells/physiology , Heart/embryology , LIM Domain Proteins/physiology , LIM-Homeodomain Proteins/metabolism , Repressor Proteins/physiology , Transcription Factors/metabolism , Zebrafish Proteins/physiology , Zebrafish/embryology , Animals , Animals, Genetically Modified , Embryonic Stem Cells/cytology , Female , HEK293 Cells , Homeobox Protein Nkx-2.5 , Humans , LIM Domain Proteins/genetics , LIM-Homeodomain Proteins/genetics , Male , Mice , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , NIH 3T3 Cells , Repressor Proteins/genetics , Signal Transduction/physiology , Transcription Factors/genetics , Tretinoin/physiology , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
20.
Dev Biol ; 325(2): 482-91, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19028487

ABSTRACT

In Drosophila, primary pair-rule genes establish the parasegmental boundaries and indirectly control the periodic expression of the segment polarity genes engrailed (en) and wingless (wg) via regulation of secondary pair-rule genes. Although orthologs of some Drosophila pair-rule genes are not required for proper segmentation in Tribolium, segmental expression of Tc-en and Tc-wg is conserved. To understand how these segment polarity genes are regulated, we examined the results of expressing one or two pair-rule genes in the absence of the other known pair-rule genes. Expression of one or both of the secondary pair-rule genes, Tc-sloppy-paired (Tc-slp) and Tc-paired (Tc-prd), activated Tc-wg in the absence of the primary pair-rule genes, Tc-even-skipped (Tc-eve), Tc-runt (Tc-run) and Tc-odd-skipped (Tc-odd). Tc-eve alone failed to activate Tc-wg or Tc-en, but in combination with Tc-run or Tc-prd activated Tc-en. These results, interpreted within the pair-rule gene expression patterns, suggest separate models for the genetic regulation of the juxtaposed expression of Tc-wg and Tc-en at odd- and even-numbered parasegmental boundaries, respectively. Conserved interactions between eve and prd at the anterior boundary of odd-numbered parasegments may reflect an ancestral segmentation mechanism that functioned in every segment prior to the evolution of pair-rule segmentation.


Subject(s)
Biological Evolution , Drosophila Proteins/genetics , Gene Regulatory Networks , Homeodomain Proteins/genetics , Insect Proteins/genetics , Transcription Factors/genetics , Tribolium/metabolism , Wnt1 Protein/genetics , Animals , Body Patterning , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/metabolism , Gene Expression Regulation , Genes, Insect , Homeodomain Proteins/metabolism , Insect Proteins/metabolism , Transcription Factors/metabolism , Tribolium/embryology , Tribolium/genetics , Wnt1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...