Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Tissue Eng Regen Med ; 13(7): 1134-1142, 2019 07.
Article in English | MEDLINE | ID: mdl-30959558

ABSTRACT

Rheumatoid arthritis (RA) is a common inflammatory chronic disease. It has been reported that mesenchymal stem cells (MSCs) have the effect of immune suppression in collagen-induced arthritis (CIA) mice model. However, the in vivo therapeutic effect from the long-interval repeated intravenous administration of human umbilical cord blood-derived (hUCB)-MSCs had not been investigated in CIA mice model. This study was undertaken to investigate the effects of long-interval repeated intravenous administration of hUCB-MSCs at different doses in CIA mice model. Mice were intravenously injected with three different doses of hUCB-MSCs once every 2 weeks for three times. RA severity was assessed by clinical joint score and histologic analysis including hematoxylin and eosin staining, safranin-O staining, and toluidine blue staining. We used real-time polymerase chain reaction and flow cytometry to quantify differences in inflammatory cytokines and Tregs. Mice treated with hUCB-MSCs showed significant improvement in clinical joint score. Histologic analysis revealed that hUCB-MSCs definitely reduced joint inflammation, cartilage damage, and formation of pannus in multimedium and multihigh groups. These hUCB-MSCs also significantly decreased IL-1 beta protein levels in multimedium and multihigh groups and IL-6 protein levels in all hUCB-MSCs-treated groups. Furthermore, mRNA levels of IL-1 beta and IL-6 were decreased significantly in all hUCB-MSCs-treated groups, whereas the expression of anti-inflammatory cytokine IL-10 was increased in the multihigh group. Tregs known as suppressor T cells were also significantly increased in the multihigh group. Our findings suggest that long-interval repeated intravenous administration of hUCB-MSCs has therapeutic effects by improving symptoms of RA in CIA mice model in a dose-dependent manner.


Subject(s)
Arthritis, Experimental , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Umbilical Cord/metabolism , Administration, Intravenous , Animals , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Arthritis, Experimental/therapy , Female , Heterografts , Humans , Male , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred DBA , Time Factors , Umbilical Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...