Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(2): 108860, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318359

ABSTRACT

Current trends in wound care research focus on creating dressings for diverse wound types, aiming to effectively control the wound healing process. We proposed a wound dressing composed of oxidized hyaluronic acid and amine gelatin with embedded lysine-modified gelatin nanoparticles (HGel-GNPs-lysine). This dressing improves mechanical properties and reduces degradation rates. The storage modulus for HGel-GNPs-lysine was 3,800 Pa, exceeding that of HGel (1,750 Pa). The positively charged surface of GNPs-lysine effectively eliminated Escherichia coli and Staphylococcus aureus. In a diabetic mice model (C57BL/6), HGel-GNPs-lysine immobilized with basic-fibroblast growth factor promoted granulation tissue thickness and collagen density. Gene expression analysis indicated that HGel-GNPs-lysine reduced inflammation and enhanced angiogenesis. This study highlights that HGel-GNPs-lysine could offer alternative treatment strategies for regulating the inflammatory response at the injury site in wound dressing applications.

2.
Int J Nanomedicine ; 18: 509-525, 2023.
Article in English | MEDLINE | ID: mdl-36742991

ABSTRACT

Nanoparticle-based drug delivery systems have been designed to treat various diseases. However, many problems remain, such as inadequate tumor targeting and poor therapeutic outcomes. To overcome these obstacles, cell-based drug delivery systems have been developed. Candidates for cell-mediated drug delivery include blood cells, immune cells, and stem cells with innate tumor tropism and low immunogenicity; they act as a disguise to deliver the therapeutic payload. In drug delivery systems, therapeutic agents are encapsulated intracellularly or attached to the surface of the plasma membrane and transported to the desired site. Here, we review the pros and cons of cell-based therapies and discuss their homing mechanisms in the tumor microenvironment. In addition, different strategies to load therapeutic agents inside or on the surface of circulating cells and the current applications for a wide range of disease treatments are summarized.


Subject(s)
Nanoparticles , Neoplasms , Humans , Drug Delivery Systems , Neoplasms/drug therapy , Stem Cells , Cell Membrane , Nanoparticles/therapeutic use , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...