Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Nat Commun ; 15(1): 4775, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839750

ABSTRACT

The metal ion transporter SLC39A8 is associated with physiological traits and diseases, including blood manganese (Mn) levels and inflammatory bowel diseases (IBD). The mechanisms by which SLC39A8 controls Mn homeostasis and epithelial integrity remain elusive. Here, we generate Slc39a8 intestinal epithelial cell-specific-knockout (Slc39a8-IEC KO) mice, which display markedly decreased Mn levels in blood and most organs. Radiotracer studies reveal impaired intestinal absorption of dietary Mn in Slc39a8-IEC KO mice. SLC39A8 is localized to the apical membrane and mediates 54Mn uptake in intestinal organoid monolayer cultures. Unbiased transcriptomic analysis identifies alkaline ceramidase 1 (ACER1), a key enzyme in sphingolipid metabolism, as a potential therapeutic target for SLC39A8-associated IBDs. Importantly, treatment with an ACER1 inhibitor attenuates colitis in Slc39a8-IEC KO mice by remedying barrier dysfunction. Our results highlight the essential roles of SLC39A8 in intestinal Mn absorption and epithelial integrity and offer a therapeutic target for IBD associated with impaired Mn homeostasis.


Subject(s)
Alkaline Ceramidase , Cation Transport Proteins , Inflammatory Bowel Diseases , Intestinal Mucosa , Manganese , Mice, Knockout , Animals , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Manganese/metabolism , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Alkaline Ceramidase/metabolism , Alkaline Ceramidase/genetics , Humans , Mice, Inbred C57BL , Homeostasis , Male , Colitis/metabolism , Colitis/genetics , Colitis/pathology , Intestinal Absorption , Epithelial Cells/metabolism
2.
Nat Chem Biol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664586

ABSTRACT

The natural product hinokitiol mobilizes iron across lipid bilayers at low concentrations and restores hemoglobinization in iron transporter protein-deficient systems. But hinokitiol fails to similarly mobilize iron at higher concentrations, limiting its uses in chemical biology and medicine. Here we show that at higher concentrations, hinokitiol3:Fe(III) complexes form large, higher-order aggregates, leading to loss of transmembrane iron mobilization. Guided by this understanding and systematic structure-function studies enabled by modular synthesis, we identified FeM-1269, which minimally aggregates and dose-dependently mobilizes iron across lipid bilayers even at very high concentrations. In contrast to hinokitiol, FeM-1269 is also well-tolerated in animals at high doses for extended periods of time. In a mouse model of anemia of inflammation, FeM-1269 increases serum iron, transferrin saturation, hemoglobin and hematocrit. This rationally developed iron-mobilizing small molecule has enhanced potential as a molecular prosthetic for understanding and potentially treating iron transporter deficiencies.

3.
Cell Stress Chaperones ; 29(1): 97-112, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38272254

ABSTRACT

Zinc (Zn) is an essential micronutrient in organisms and an abundant element in the Earth's crust. Trace amounts of Zn released from natural sources can enter aquatic ecosystems through weathering and erosion. Zn accumulates in organisms, and when its intracellular concentration exceeds a certain level, it can induce oxidative stress and trigger oxidative stress-mediated heat shock protein (HSP) modulation. HSP70 is the most evolutionarily conserved among the HSP families. Despite extensive research on HSP70 genes in bivalves, the HSP70 gene family of Tegillarca granosa is still poorly characterized. We identified 65 HSP70 genes belonging to 6 families in the T. granosa genome, with 50 HSPa12 and 11 HSPa B2 genes highly expanded. On chromosome 11, 39 HSP70 (60%) genes were identified, and the HSPa12A genes were highly duplicated. A total of 527 and 538 differentially expressed genes were identified in the gills and mantle based on Zn exposure, respectively. The Gene Ontology of cellular anatomical entities was significantly enriched with upregulated differentially expressed genes in the gills and mantle. Eight of the 11 HSPa B2 genes were upregulated in both tissues. Most of the genes identified in both tissues were involved in "protein homeostasis" and "inhibition of apoptosis," which are associated with the HSP70 family's resistance to extrinsic and intrinsic stress. Hence, this study identified that the HSP70 gene family plays a vital role in the adaptation of aquatic organisms to heavy metal (e.g., Zn) stress in contaminated environments by compiling the different physiological responses to preserve homeostasis.


Subject(s)
Ecosystem , Metals, Heavy , Animals , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins , Metals, Heavy/toxicity , Zinc/toxicity
4.
Sci Rep ; 14(1): 1342, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228797

ABSTRACT

Cladonia borealis is a lichen that inhabits Antarctica's harsh environment. We sequenced the whole genome of a C. borealis culture isolated from a specimen collected in Antarctica using long-read sequencing technology to identify specific genetic elements related to its potential environmental adaptation. The final genome assembly produced 48 scaffolds, the longest being 2.2 Mbp, a 1.6 Mbp N50 contig length, and a 36 Mbp total length. A total of 10,749 protein-coding genes were annotated, containing 33 biosynthetic gene clusters and 102 carbohydrate-active enzymes. A comparative genomics analysis was conducted on six Cladonia species, and the genome of C. borealis exhibited 45 expanded and 50 contracted gene families. We identified that C. borealis has more Copia transposable elements and expanded transporters (ABC transporters and magnesium transporters) compared to other Cladonia species. Our results suggest that these differences contribute to C. borealis' remarkable adaptability in the Antarctic environment. This study also provides a useful resource for the genomic analysis of lichens and genetic insights into the survival of species isolated from Antarctica.


Subject(s)
Ascomycota , Lichens , Lichens/genetics , Antarctic Regions , Genome , Extreme Environments , Phylogeny
5.
Nat Microbiol ; 9(2): 524-536, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297167

ABSTRACT

Ammonia-oxidizing microorganisms (AOM) contribute to one of the largest nitrogen fluxes in the global nitrogen budget. Four distinct lineages of AOM: ammonia-oxidizing archaea (AOA), beta- and gamma-proteobacterial ammonia-oxidizing bacteria (ß-AOB and γ-AOB) and complete ammonia oxidizers (comammox), are thought to compete for ammonia as their primary nitrogen substrate. In addition, many AOM species can utilize urea as an alternative energy and nitrogen source through hydrolysis to ammonia. How the coordination of ammonia and urea metabolism in AOM influences their ecology remains poorly understood. Here we use stable isotope tracing, kinetics and transcriptomics experiments to show that representatives of the AOM lineages employ distinct regulatory strategies for ammonia or urea utilization, thereby minimizing direct substrate competition. The tested AOA and comammox species preferentially used ammonia over urea, while ß-AOB favoured urea utilization, repressed ammonia transport in the presence of urea and showed higher affinity for urea than for ammonia. Characterized γ-AOB co-utilized both substrates. These results reveal contrasting niche adaptation and coexistence patterns among the major AOM lineages.


Subject(s)
Archaea , Bacteria , Archaea/metabolism , Bacteria/metabolism , Ammonia/metabolism , Nitrogen/metabolism , Oxidation-Reduction , Nitrification , Phylogeny , Soil Microbiology , Urea/metabolism
6.
ISME J ; 17(11): 1839-1850, 2023 11.
Article in English | MEDLINE | ID: mdl-37596409

ABSTRACT

Soil represents the largest reservoir of Archaea on Earth. Present-day archaeal diversity in soils globally is dominated by members of the class Nitrososphaeria. The evolutionary radiation of this class is thought to reflect adaptations to a wide range of temperatures, pH, and other environmental conditions. However, the mechanisms that govern competition and coexistence among Nitrososphaeria lineages in soil remain poorly understood. Here we show that predominant soil Nitrososphaeria lineages compose a patchwork of gene inventory and expression profiles for ammonia, urea, and phosphate utilization. In contrast, carbon fixation, respiration, and ATP synthesis genes are conserved and expressed consistently among predominant phylotypes across 12 major evolutionary lineages commonly found in soil. In situ gene expression profiles closely resemble pure culture reference strains under optimal growth conditions. Together, these results reveal resource-based coexistence patterns among Nitrososphaeria lineages and suggest complementary ecophysiological niches associated with differential nutrient acquisition strategies among globally predominant archaeal lineages in soil.


Subject(s)
Archaea , Nitrogen , Archaea/metabolism , Nitrogen/metabolism , Soil , Soil Microbiology , Ammonia/metabolism , Phylogeny , Oxidation-Reduction , DNA, Archaeal/metabolism
7.
Appl Environ Microbiol ; 89(8): e0217322, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37439697

ABSTRACT

An important role of nitric oxide (NO) as either a free intermediate in the NH3 oxidation pathway or a potential oxidant for NH3 or NH2OH has been proposed for ammonia-oxidizing bacteria (AOB) and archaea (AOA), respectively. However, tracing NO metabolism at low concentrations remains notoriously difficult. Here, we use electrochemical sensors and the mild NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) to trace apparent NO concentration and determine production rates at low micromolar concentrations in the model AOB strain Nitrosomonas europaea. In agreement with previous studies, we found that PTIO does not affect NH3 oxidation instantaneously in both Nitrosospira briensis and Nitrosomonas europaea, unlike inhibitors for ammonia oxidation such as allylthiourea and acetylene, although it effectively scavenged NO from the cell suspensions. Quantitative analysis showed that NO production by N. europaea amounted to 3.15% to 6.23% of NO2- production, whereas N. europaea grown under O2 limitation produced NO equivalent to up to 40% of NO2- production at high substrate concentrations. In addition, we found that PTIO addition to N. europaea grown under O2 limitation abolished N2O production. These results indicate different turnover rates of NO during NH3 oxidation under O2-replete and O2-limited growth conditions in AOB. The results suggest that NO may not be a free intermediate or remain tightly bound to iron centers of enzymes during hydroxylamine oxidation and that only NH3 saturation and adaptation to O2 limitation may lead to significant dissociation of NO from hydroxylamine dehydrogenase. IMPORTANCE Ammonia oxidation by chemolithoautotrophic ammonia-oxidizing bacteria (AOB) is thought to contribute significantly to global nitrous oxide (N2O) emissions and leaching of oxidized nitrogen, particularly through their activity in nitrogen (N)-fertilized agricultural production systems. Although substantial efforts have been made to characterize the N metabolism in AOB, recent findings suggest that nitric oxide (NO) may play an important mechanistic role as a free intermediate of hydroxylamine oxidation in AOB, further implying that besides hydroxylamine dehydrogenase (HAO), additional enzymes may be required to complete the ammonia oxidation pathway. However, the NO spin trap PTIO was found to not inhibit ammonia oxidation in AOB. This study provides a combination of physiological and spectroscopic evidence that PTIO indeed scavenges only free NO in AOB and that significant amounts of free NO are produced only during incomplete hydroxylamine oxidation or nitrifier denitrification under O2-limited growth conditions.


Subject(s)
Betaproteobacteria , Nitric Oxide , Nitric Oxide/metabolism , Ammonia/metabolism , Hydroxylamine/chemistry , Hydroxylamine/metabolism , Nitrogen Dioxide/metabolism , Oxidation-Reduction , Nitrous Oxide/metabolism , Archaea/metabolism , Betaproteobacteria/metabolism , Nitrogen/metabolism , Hydroxylamines/metabolism , Nitrification
8.
Korean J Med Educ ; 35(2): 125-141, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37291842

ABSTRACT

PURPOSE: In February 2020, the first outbreak of coronavirus disease 2019 (COVID-19) occurred in Daegu, South Korea, and confirmed cases increased sharply, sparking intense anxiety among residents. This study analyzed the data of a mental health survey on students enrolled at a medical school located in Daegu in 2020. METHODS: An online survey was administered to 654 medical school students (pre-medical course: 220 students, medical course: 434 students) from August to October 2020, with 61.16% (n=400) valid responses. The questionnaire included items about COVID-19-related experiences, stress, stress resilience, anxiety, and depression. RESULTS: Of the survey participants, 15.5% had experienced unbearable stress, with the most significant stress factors (in descending order) being limited leisure activities, unusual experiences related to COVID-19, and limited social activities. Approximately 28.8% reported psychological distress, and their most experienced negative emotions were helplessness, depression, and anxiety (in descending order). The mean Beck Anxiety Inventory and Beck Depression Inventory-II scores were 2.44 and 6.08, respectively, both within normal ranges. Approximately 8.3% had mild or greater anxiety, and 15% had mild or greater depression. For students under psychological distress, the experience of unbearable stress before COVID-19 affected anxiety (odds ratio [OR], 0.198; p<0.05), and having an underlying condition affected depression (OR, 0.190; p<0.05). With respect to their psychological distress during August-October 2020 compared with that during February-March 2020 (2 months from the initial outbreak), anxiety stayed the same while depression increased and resilience decreased at a statistically significant level. CONCLUSION: It was found that some medical students were suffering from psychological difficulties related to COVID-19, and there were several risk factors for them. This finding suggests that medical schools need to not only develop academic management systems but also provide programs that can help students manage their mental health and emotions in preparation for an infectious disease pandemic.


Subject(s)
COVID-19 , Students, Medical , Humans , COVID-19/epidemiology , Mental Health , Students, Medical/psychology , Pandemics , SARS-CoV-2 , Depression/epidemiology , Depression/etiology , Depression/psychology , Stress, Psychological/epidemiology , Stress, Psychological/etiology
9.
J Insect Sci ; 23(2)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36916276

ABSTRACT

Nitrogen, a limiting growth factor in wood-feeding insects, was hypothesized to play a role in the recently discovered behavior of subterranean termites returning to the nest to molt. Coptotermes gestroi (Wasmann) exuviae is approximately 11% N by dry weight, and therefore a potentially rich source of recyclable nitrogen. Exuviae from a C. gestroi colony were marked with immunoglobulin G (IgG) and were fed to two-year-old C. gestroi colonies. IgG-marked exuviae were detected with an enzyme-linked immunosorbent assay. The IgG marker was later detected in every caste and life stage except first-instar larvae (L1). The proportion of individuals positive for the marker varied by caste, with the queens always being positive for the marker. The queens and second-or-higher-instar workers (W2+) had significantly higher concentrations of the marker than the eggs and L1. The trophic path of exuviae includes individuals that directly fed on marked exuviae (workers and possibly second-instar larvae) and individuals that secondarily received marked exuviae through trophallaxis (queens, kings, and soldiers). This study described the trophic path of consumed exuviae and demonstrated its role in the recycling of nitrogen in a subterranean termite. Molting at the central nest may be an efficient means to transfer nitrogen from shed exuviae to recipients and may be a nitrogen recycling behavior conserved from a termite ancestor.


Subject(s)
Cockroaches , Isoptera , Animals , Ovum , Larva , Immunoglobulin G
10.
Animals (Basel) ; 12(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36230339

ABSTRACT

The crocodile icefish, Chionobathyscus dewitti, belonging to the family Channichthyidae, is an endemic species of the Southern Ocean. The study of its biological features and genetics is challenging as the fish inhabits the deep sea around Antarctic waters. The icefish, the sole cryopelagic species, shows unique physiological and genetic features, unlike other teleosts. It lacks hemoglobin and has evolved antifreeze proteins. Here, we report the genome sequencing data of crocodile icefish produced using the Illumina Novaseq 6000 platform. The estimated genome size was 0.88 Gb with a K-value of 19, and the unique sequence, heterozygosity, error, and duplication rates were 57.4%, 0.421%, 0.317%, and 0.738%, respectively. A genome assembly of 880.69 Mb, with an N50 scaffold length of 2401 bp, was conducted. We identified 2,252,265 microsatellite motifs from the genome assembly data, and dinucleotide repeats (1,920,127; 85.25%) had the highest rate. We selected 84 primer pairs from the genome survey assembly and randomly selected 30 primer pairs for validation. As a result, 15 primer pairs were validated as microsatellite markers.

11.
Nurse Educ Pract ; 64: 103431, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36049395

ABSTRACT

AIMS: This study investigated novice nurses' perception of the effects of preceptors' mentoring function on their self-efficacy and organizational commitment. BACKGROUND: Nursing mentoring is a mutually beneficial relationship between more and less experienced nurses. In nurse education, mentoring is a powerful tool that can be used for a successful transition from a novice to an experienced nurse. DESIGN: This descriptive study used a cross-sectional design. METHODS: A questionnaire survey was conducted with 160 novice nurses from Korean general hospitals who had been working for less than a year after completing their preceptorship. RESULTS: The preceptors' mentoring function as perceived by the novice nurses was 3.87, self-efficacy of the novice nurses was 3.71 points, and the organizational commitment was 3.46 out of 5 points. The results of the multiple regression analysis showed that mentoring function significantly affected novice nurses' self-efficacy (ß = 0.50, p < 0.01) and organizational commitment (ß = 0.54, p < 0.01). Further, the preceptorship training period had a significant effect on organizational commitment (ß = 0.13, p < 0.05). CONCLUSION: Preceptors' mentoring function, as perceived by novice nurses, affected their self-efficacy and organizational commitment.


Subject(s)
Mentoring , Nurses , Cross-Sectional Studies , Humans , Preceptorship/methods , Self Efficacy , Surveys and Questionnaires
12.
Animals (Basel) ; 12(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35804506

ABSTRACT

The Muraenolepididae family of fishes, known as eel cods, inhabits continental slopes and shelves in the Southern Hemisphere. This family belongs to the Gadiformes order, which constitutes one of the most important commercial fish resources worldwide, but the classification of the fish species in this order is ambiguous because it is only based on the morphological and habitat characteristics of the fishes. Here, the genome of Patagonian moray cod was sequenced using the Illumina HiSeq platform, and screened for microsatellite motifs. The genome was predicted to be 748.97 Mb, with a heterozygosity rate of 0.768%, via K-mer analysis (K = 25). The genome assembly showed that the total size of scaffolds was 711.92 Mb and the N50 scaffold length was 1522 bp. Additionally, 4,447,517 microsatellite motifs were identified from the genome survey assembly, and the most abundant motif type was found to be AC/GT. In summary, these data may facilitate the identification of molecular markers in Patagonian moray cod, which would be a good basis for further whole-genome sequencing with long read sequencing technology and chromosome conformation capture technology, as well as population genetics.

13.
Proc Natl Acad Sci U S A ; 119(26): e2121400119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35737834

ABSTRACT

Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a surrogate transmembrane iron transporter that can restore hemoglobinization in zebrafish deficient in other iron transporting proteins and can increase gut iron absorption in FPN1-deficient flatiron mice. However, whether hinokitiol can restore normal iron physiology in FPN1-deficient animals or primary cells from patients and the mechanisms underlying such targeted activities remain unknown. Here, we show that hinokitiol redistributes iron from the liver to red blood cells in flatiron mice, thereby increasing hemoglobin and hematocrit. Mechanistic studies confirm that hinokitiol functions as a surrogate transmembrane iron transporter to release iron trapped within liver macrophages, that hinokitiol-Fe complexes transfer iron to transferrin, and that the resulting transferrin-Fe complexes drive red blood cell maturation in a transferrin-receptor-dependent manner. We also show in FPN1-deficient primary macrophages derived from patients with ferroportin disease that hinokitiol moves labile iron from inside to outside cells and decreases intracellular ferritin levels. The mobilization of nonlabile iron is accompanied by reductions in intracellular ferritin, consistent with the activation of regulated ferritin proteolysis. These findings collectively provide foundational support for the translation of small molecule iron transporters into therapies for human diseases caused by iron misdistribution.


Subject(s)
Iron , Macrophages , Monoterpenes , Tropolone/analogs & derivatives , Animals , Cation Transport Proteins/deficiency , Ferritins/metabolism , Humans , Iron/metabolism , Macrophages/metabolism , Mice , Monoterpenes/metabolism , Transferrin/metabolism , Tropolone/metabolism , Zebrafish/metabolism
14.
J Neurochem ; 160(3): 356-375, 2022 02.
Article in English | MEDLINE | ID: mdl-34837396

ABSTRACT

Neurodegeneration with brain iron accumulation (NBIA) is a clinically and genetically heterogeneous group of neurodegenerative diseases characterized by the abnormal accumulation of brain iron and the progressive degeneration of the nervous system. One of the recently identified subtypes of NBIA is ß-propeller protein-associated neurodegeneration (BPAN). BPAN is caused by de novo mutations in the WDR45/WIPI4 (WD repeat domain 45) gene. WDR45 is one of the four mammalian homologs of yeast Atg18, a regulator of autophagy. WDR45 deficiency in BPAN patients and animal models may result in defects in autophagic flux. However, how WDR45 deficiency leads to brain iron overload remains unclear. To elucidate the role of WDR45, we generated a WDR45-knockout (KO) SH-SY5Y neuroblastoma cell line using CRISPR-Cas9-mediated genome editing. Using these cells, we demonstrated that the non-TF (transferrin)-bound iron pathway dominantly mediated the accumulation of iron. Moreover, the loss of WDR45 led to defects in ferritinophagy, a form of autophagy that degrades the iron storage protein ferritin. We showed that impaired ferritinophagy contributes to iron accumulation in WDR45-KO cells. Iron accumulation was also detected in the mitochondria, which was accompanied by impaired mitochondrial respiration, elevated reactive oxygen species, and increased cell death. Thus, our study links WDR45 to specific iron acquisition pathways and ferritinophagy. Cover Image for this issue: https://doi.org/10.1111/jnc.15388.


Subject(s)
Autophagy/genetics , Carrier Proteins/genetics , Iron Overload/genetics , Neurodegenerative Diseases/genetics , Brain Chemistry/genetics , Cell Death , Cell Line , Gene Knockout Techniques , Humans , Iron/metabolism , Iron Overload/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Reactive Oxygen Species , Transferrin/metabolism
15.
Animals (Basel) ; 11(11)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34827918

ABSTRACT

Trematomus loennbergii Regan, 1913, is an evolutionarily important marine fish species distributed in the Antarctic Ocean. However, its genome has not been studied to date. In the present study, whole genome sequencing was performed using next-generation sequencing (NGS) technology to characterize its genome and develop genomic microsatellite markers. The 25-mer frequency distribution was estimated to be the best, and the genome size was predicted to be 815,042,992 bp. The heterozygosity, average rate of read duplication, and sequencing error rates were 0.536%, 0.724%, and 0.292%, respectively. These data were used to analyze microsatellite markers, and a total of 2,264,647 repeat motifs were identified. The most frequent repeat motif was di-nucleotide with 87.00% frequency, followed by tri-nucleotide (10.45%), tetra-nucleotide (1.94%), penta-nucleotide (0.34%), and hexa-nucleotide (0.27%). The AC repeat motif was the most abundant motif among di-nucleotides and among all repeat motifs. Among microsatellite markers, 181 markers were selected and PCR technology was used to validate several markers. A total of 15 markers produced only one band. In summary, these results provide a good basis for further studies, including evolutionary biology studies and population genetics of Antarctic fish species.

16.
Animals (Basel) ; 11(9)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34573596

ABSTRACT

The brine shrimp Artemia has a ZW sex determination system with ZW chromosomes in females and ZZ chromosomes in males. Artemia has been considered a promising model organism for ZW sex-determining systems, but the genes involved in sex determination and differentiation of Artemia have not yet been identified. Here, we conducted transcriptome sequencing of female and male A. franciscana using PacBio Iso-Seq and Illumina RNA-Seq techniques to identify candidate sex determination genes. Among the 42,566 transcripts obtained from Iso-Seq, 23,514 were analyzed. Of these, 2065 (8.8%) were female specific, 2513 (10.7%) were male specific, and 18,936 (80.5%) were co-expressed in females and males. Based on GO enrichment analysis and expression values, we found 10 female-biased and 29 male-biased expressed genes, including DMRT1 and Sad genes showing male-biased expression. Our results showed that DMRT1 has three isoforms with five exons, while Sad has seven isoforms with 2-11 exons. The Sad gene is involved in ecdysteroid signaling related to molting and metamorphosis in arthropods. Further studies on ecdysteroid biosynthetic genes are needed to improve our understanding of Artemia sex determination. This study will provide a valuable resource for sex determination and differentiation studies on Artemia and other crustaceans with ZW systems.

17.
Sci Rep ; 11(1): 16997, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34417533

ABSTRACT

Nanoparticulate matter activates the aryl hydrocarbon receptor (AhR) pathway in the respiratory system in a process involving the AhR nuclear translocator (ARNT) and cytochrome P450 family 1, member A1 (CYP1A1). We examined changes in AhR-related pathways following intranasal instillation of nanoparticulate matter in the olfactory bulb and cerebral cortex. Twice a day for 5 days per week for 1 week or 2 weeks, 8-week-old Sprague-Dawley rats were intranasally instilled with 10 µL nanoparticulate matter (nano group; n = 36). An equal volume of saline was intranasally instilled in control rats (n = 36). One week after intranasal instillation, olfactory function and Y-maze tests were performed. The expression levels of AhR in the olfactory bulb and temporal cortex were analyzed using western blotting and immunofluorescence assays. The expression levels of AhR, CYP1A1, inducible nitric oxide synthase (iNOS), and five genes encoding cation transporters (ARNT, ATP7B, ATPB1, OCT1, and OCT2) in the olfactory bulb were analyzed using quantitative reverse transcription. The olfactory discrimination capability was reduced in the nano group compared with the control group. Proportional changes in the Y-maze test were not significantly different between the nano and control groups. AhR mRNA and protein expression in the olfactory bulb increased 1.71-fold (P < 0.001) and 1.60-fold (P = 0.008), respectively. However, no significant changes were observed in the temporal cortex. In the olfactory bulb, the expression of ARNT, ATP7B, ATPB1, and OCT2 was downregulated. CYP1A1 and iNOS expression in the olfactory bulb was upregulated compared with that in the temporal cortex. The intranasal instillation of nanoparticulate matter decreased the olfactory discrimination ability, which was accompanied by upregulation of AhR expression and downregulation of cation transporters in the olfactory bulb.


Subject(s)
Nanoparticles/administration & dosage , Olfactory Bulb/physiology , Administration, Intranasal , Animals , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Gene Expression Regulation , Metals, Heavy/analysis , Nanoparticles/ultrastructure , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Olfactory Bulb/ultrastructure , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Smell
18.
Phytomedicine ; 91: 153668, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34385093

ABSTRACT

BACKGROUND: Aloe vera is a functional food with various pharmacological functions, including an immune-modulating effect. Until now, A. vera has never been studied as an adjuvant in influenza vaccine, and its effects on upper respiratory tract infection (URI) are unknown. PURPOSE: The objective of our study was to investigate the effect of processed A. vera gel (PAG) on immunogenicity of quadrivalent inactivated influenza vaccine and URI in healthy adults. STUDY DESIGN: A randomized, double-blind, placebo-controlled clinical trial was performed. METHODS: This study was conducted in 100 healthy adults at a single center from September 2017 to May 2018. Subjects were randomly divided into a PAG group (n = 50) and a placebo group (n = 50). The enrolled subjects were instructed to ingest the study drug for 8 weeks. The participants received a single dose of quadrivalent inactivated influenza vaccine after taking the study drug for the first 4 weeks of the study. The primary endpoint was seroprotection rate against at least one viral strain at 4 weeks post-vaccination. Other outcomes were seroprotection rate at 24 weeks post-vaccination, seroconversion rate, geometric mean fold increase (GMFI) at 4 and 24 weeks post-vaccination, seroprotection rate ratio and geometric mean titer ratio (GMTR) at 4 weeks post-vaccination between PAG and placebo groups, and incidence, severity, and duration of URI. RESULTS: The European Committee for proprietary medicinal products (CPMP) evaluation criteria were met at least one in the PAG and placebo groups for all strains. However, there was no significant difference in the seroprotection rate at 4 weeks post-vaccination against all strains in both PAG and placebo groups. Among secondary endpoints, the GMFI at 4 weeks post-vaccination for the A/H3N2 was significantly higher in the PAG than in placebo group. The GMTR as adjuvant effect was 1.382 (95% CI, 1.014-1.1883). Kaplan-Meier curve analysis showed a reduction in incidence of URI (p = 0.035), and a generalized estimating equation model identified a decrease in repeated URI events (odds ratio 0.57; 95% CI, 0.39-0.83; p = 0.003) in the PAG group. CONCLUSIONS: Oral intake of PAG did not show a significant increase in seroprotection rate from an immunogenicity perspective. However, it reduced the number of URI episodes. A well-designed further study is needed on the effect of PAG's antibody response against A/H3N2 in the future.


Subject(s)
Adjuvants, Immunologic , Immunogenicity, Vaccine , Influenza Vaccines , Influenza, Human , Plant Preparations/chemistry , Adult , Double-Blind Method , Hemagglutination Inhibition Tests , Humans , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control
19.
Biosci Rep ; 41(7)2021 07 30.
Article in English | MEDLINE | ID: mdl-34223611

ABSTRACT

The genus Pogonophryne is a speciose group that includes 28 species inhabiting the coastal or deep waters of the Antarctic Southern Ocean. The genus has been divided into five species groups, among which the P. albipinna group is the most deep-living group and is characterized by a lack of spots on the top of the head. Here, we carried out genome survey sequencing of P. albipinna using the Illumina HiSeq platform to estimate the genomic characteristics and identify genome-wide microsatellite motifs. The genome size was predicted to be ∼883.8 Mb by K-mer analysis (K = 25), and the heterozygosity and repeat ratio were 0.289 and 39.03%, respectively. The genome sequences were assembled into 571624 contigs, covering a total length of ∼819.3 Mb with an N50 of 2867 bp. A total of 2217422 simple sequence repeat (SSR) motifs were identified from the assembly data, and the number of repeats decreased as the length and number of repeats increased. These data will provide a useful foundation for the development of new molecular markers for the P. albipinna group as well as for further whole-genome sequencing of P. albipinna.


Subject(s)
Fish Proteins/genetics , Genome , Genomics , Microsatellite Repeats , Nucleotide Motifs , Perciformes/genetics , Animals , Genetic Markers , Genome Size , High-Throughput Nucleotide Sequencing
20.
Front Microbiol ; 12: 671480, 2021.
Article in English | MEDLINE | ID: mdl-34322099

ABSTRACT

The discovery of ammonia-oxidizing archaea (AOA) and complete ammonia-oxidizing (comammox) bacteria widespread in terrestrial ecosystems indicates an important role of these organisms in terrestrial nitrification. Recent evidence indicated a higher ammonia affinity of comammox bacteria than of terrestrial AOA and ammonia-oxidizing bacteria (AOB), suggesting that comammox bacteria could potentially represent the most low-nutrient adapted nitrifiers in terrestrial systems. We hypothesized that a nutrient-limited enrichment strategy could exploit the differences in cellular kinetic properties and yield enrichments dominated by high affinity and high yield comammox bacteria. Using soil with a mixed community of AOA, AOB, and comammox Nitrospira, we compared performance of nutrient-limited chemostat enrichment with or without batch culture pre-enrichment in two different growth media without inhibitors or antibiotics. Monitoring of microbial community composition via 16S rRNA and amoA gene sequencing showed that batch enrichments were dominated by AOB, accompanied by low numbers of AOA and comammox Nitrospira. In contrast, nutrient-limited enrichment directly from soil, and nutrient-limited sub-cultivation of batch enrichments consistently yielded high enrichments of Nitrosocosmicus-affiliated AOA associated with multiple canonical nitrite-oxidizing Nitrospira strains, whereas AOB numbers dropped below 0.1% and comammox Nitrospira were lost completely. Our results reveal competitiveness of Nitrosocosmicus sp. under nutrient limitation, and a likely more complex or demanding ecological niche of soil comammox Nitrospira than simulated in our nutrient-limited chemostat experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...