Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(6): 2977-2988, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38300259

ABSTRACT

This study investigated the effects of Lactobacillus brevis-fermented gamma-aminobutyric acid (LB-GABA) on depressive and anxiety-like behaviors with the underlying molecular mechanism in a chronic stress model of BALB/c mice. LB-GABA attenuates both neuronal cell death and the increase of monoamine oxidase activity induced by hydrogen peroxide. Behavioral tests revealed that GABA significantly increased sucrose preference and reduced immobility time in both tail suspension and forced swimming tests. LB-GABA increased exploration of the open arms in the elevated plus maze and restored activity in the open field. Moreover, LB-GABA lowered stress hormone and inflammatory mediator levels. Mechanistically, LB-GABA increased protein levels of BDNF and TrkB, activating downstream targets (AKT, ERK, and CREB), crucial for neuronal survival and plasticity. Furthermore, LB-GABA protected hippocampal neurons from stress-induced cell death and increased serotonin and dopamine levels. Overall, LB-GABA has the potential to alleviate stress-induced depression and anxiety-like symptoms and neuroinflammation by activating the BDNF-TrkB signaling pathway.


Subject(s)
Depression , Levilactobacillus brevis , Mice , Animals , Depression/drug therapy , Depression/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Tropomyosin , Mice, Inbred BALB C , Anxiety/drug therapy , Anxiety/metabolism , Signal Transduction , gamma-Aminobutyric Acid/metabolism , Hippocampus , Disease Models, Animal , Stress, Psychological/drug therapy
2.
J Dairy Sci ; 107(5): 2620-2632, 2024 May.
Article in English | MEDLINE | ID: mdl-38101744

ABSTRACT

This study aimed to investigate the neuroprotective effects of whey protein hydrolysate (WPH) containing the pentapeptide leucine-aspartate-isoleucine-glutamine-lysine (LDIQK). Whey protein hydrolysate (50, 100, and 200 µg/mL) demonstrated the ability to restore the viability of HT22 cells subjected to 300 µM hydrogen peroxide (H2O2)-induced oxidative stress. Furthermore, at a concentration of 200 µg/mL, it significantly reduced the increase in reactive oxygen species production and calcium ion (Ca2+) influx induced by H2O2 by 46.1% and 46.2%, respectively. Similarly, the hydrolysate significantly decreased the levels of p-tau, a hallmark of tauopathy, and BCL2 associated X (BAX), a proapoptosis factor, while increasing the protein levels of choline acetyltransferase (ChAT), an enzyme involved in acetylcholine synthesis, brain-derived neurotrophic factor (BDNF), a nerve growth factor, and B-cell lymphoma 2 (BCL2, an antiapoptotic factor. Furthermore, it increased nuclear factor erythroid 2-related factor 2 (Nrf2)-hemoxygenase-1(HO-1) signaling, which is associated with the antioxidant response, while reducing the activation of mitogen-activated protein kinase (MAPK) signaling pathway components, namely phosphor-extracellular signal-regulated kinases (p-ERK), phosphor-c-Jun N-terminal kinases (p-JNK), and p-p38. Column chromatography and tandem mass spectrometry analysis identified LDIQK as a compound with neuroprotective effects in WPH; it inhibited Ca2+ influx and regulated the BAX/BCL2 ratio. Collectively, WPH containing LDIQK demonstrated neuroprotective effects against H2O2-induced neuronal cell damage, suggesting that WPH or its active peptide, LDIQK, may serve as a potential edible agent for improving cognitive dysfunction.


Subject(s)
Hydrogen Peroxide , Neuroprotective Agents , Animals , Hydrogen Peroxide/pharmacology , Neuroprotective Agents/pharmacology , Glutamine/pharmacology , Aspartic Acid/metabolism , Aspartic Acid/pharmacology , Isoleucine/metabolism , Leucine/metabolism , Lysine/metabolism , Protein Hydrolysates/pharmacology , Protein Hydrolysates/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Whey/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism
3.
Foods ; 12(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38137233

ABSTRACT

In this study, the potential of whey protein hydrolysate (WPH) and treadmill exercise to prevent cognitive decline was investigated, along with their neuroprotective mechanisms. Cognitive dysfunction was induced in mice with 1 mg/kg of scopolamine, followed by the administration of WPH at 100 and 200 mg/kg and/or treadmill exercise at 15 m/min for 30 min five days per week. Both WPH administration and treadmill exercise significantly improved the memory of mice with scopolamine-induced cognitive impairment, which was attributed to several key mechanisms, including a reduction in oxidative stress based on decreased levels of reactive oxygen species and malondialdehyde in the brain tissue and an increase in acetylcholine by increasing choline acyltransferase and decreasing acetylcholine esterase levels. Exercise and WPH also exerted neuroprotective effects by inhibiting the hyperphosphorylation of tau proteins, enhancing the expression of the brain-derived neurotrophic factor, and inhibiting apoptosis by reducing the Bax/Bcl2 ratio in conjunction with the downregulation of the mitogen-activated protein kinase pathway. Moreover, the impact of WPH and treadmill exercise extended to the gut microbiome, suggesting a potential link with cognitive improvement. These findings suggest that both WPH intake and treadmill exercise are effective strategies for mitigating cognitive impairment, providing promising avenues for treating neurodegenerative diseases.

4.
Molecules ; 28(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37959705

ABSTRACT

This study aims to compare the effects of three enzyme-rich foods, including one fermented (grain enzyme) and two non-fermented foods (enzyme foods 1 and 2), by investigating their antioxidant, anti-inflammatory, and anti-adipogenic properties. Grain enzyme exhibited the highest radical scavenging activity and was rich in antioxidant components, including total polyphenol and total flavonoid contents. Grain enzyme and enzyme foods 1 and 2 inhibited nitric oxide production by 27, 34, and 17%, respectively, at a concentration of 200 µg/mL in LPS-stimulated macrophages. Among the tested enzymes, grain enzyme demonstrated the strongest inhibition on the expression of inducible nitric oxide synthase (INOS), cyclooxygenase-2 (COX-2), and interleukin (IL)-1ß, while Enzyme Food 2 exhibited the most significant suppression of IL-6 mRNA levels. Furthermore, Grain Enzyme demonstrated a stronger inhibitory effect compared to Enzyme Food 1 and 2. Grain Enzyme decreased the mRNA expression of peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer-binding protein (C/EBP)α, and fatty acid-binding protein (FABP)4 by 28, 21, and 30%, respectively, at a concentration of 400 µg/mL. In summary, fermented grain enzymes outperformed non-fermented enzymes in suppressing inflammation and adipogenesis. This study highlights the anti-inflammatory and anti-adipogenic effects of grain enzyme, suggesting its potential as a valuable dietary supplement for managing metabolic disorders.


Subject(s)
Antioxidants , Lipogenesis , Antioxidants/chemistry , Anti-Inflammatory Agents/chemistry , Macrophages , Nitric Oxide Synthase Type II/metabolism , Cyclooxygenase 2/metabolism , RNA, Messenger/metabolism , Nitric Oxide/metabolism , Lipopolysaccharides/pharmacology
5.
Foods ; 12(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37761175

ABSTRACT

This study aimed to investigate the impact of yeast hydrolysate (YH) on lipogenesis, elucidate its mechanistic action, and identify the active compounds responsible for its anti-adipogenic effects. YH (2 mg/mL) significantly reduced Oil Red O-stained lipids. YH (2 mg/mL) also downregulated C/EBPß and upregulated KLF2, both of which are early adipogenic factors. Moreover, YH (2 mg/mL) decreased C/EBPα, PPARγ, FABP4, FAS, ACC, and HMGCR mRNA expression. Additionally, YH significantly downregulated SEBP1c and SREBP2 and their target genes, which govern fatty acid and cholesterol metabolism; however, 2 mg/mL YH had a greater suppressive effect on SREBP1c than on SREBP2. YH (2 mg/mL) also significantly reduced the mRNA level of G6PD and malic enzyme, which are enzymes that synthesize NADPH for lipid synthesis, compared with the control. Furthermore, 1-methyl-1,2,3,4-tetrahydro-ß-carboline-3-carboxylic acid (MTCA) was identified as the active compound with anti-adipogenic effects using solvent fractionation and chromatographic analysis of YH, and 1.1 µg/mL MTCA significantly downregulated SREBP1c/SREBP2 mRNAs by 47.8% and 69.2%, respectively, along with the target genes FAS, ACC, and HMGCR by 79.0%, 77.0%, and 40.9%, respectively. Collectively, YH effectively suppressed adipogenic lipid storage by downregulating SREBP- and NADPH-synthesizing genes. These findings suggest that YH containing MTCA has the potential to act as an anti-obesity agent.

6.
Food Sci Biotechnol ; 32(9): 1225-1233, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37362811

ABSTRACT

Gomisin C is a lignan isolated from the fruit of Schisandra chinensis. The current study aimed to investigate the effect of gomisin C on lipid accumulation in adipocytes and its underlying mechanism. Gomisin C effectively inhibited lipid accumulation by downregulating adipogenic factors such as PPARγ and C/EBPα. Gomisin C-mediated suppression of lipid accumulation occurred in the early adipogenic stage; C/EBPß was downregulated by 55%, while KLF2 was upregulated by 1.5-fold. Gomisin C significantly reduced the production of reactive oxygen species but upregulated antioxidant enzymes, including catalase, SOD1, and Gpx at the mRNA level. Gomisin C regulated NRF2-KEAP1 pathway by increasing NRF2 and decreasing KEAP1, in protein abundance. Furthermore, gomisin C suppressed the JAK2-STAT signaling pathway by decreasing phosphorylation. Taken together, gomisin C reduced early adipogenesis and ROS production by inhibiting the JAK2-STAT signaling pathway but activating the NRF2-KEAP1 signaling pathway. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01263-8.

7.
Food Sci Biotechnol ; 32(8): 1123-1132, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37215256

ABSTRACT

Dibenzoylmethane (DBM), a licorice-derived component, has numerous health benefits. The current study aimed to investigate the effect of DBM on adiposity-induced neuroinflammatory/oxidative response and microglial activation-induced neuronal cell damage. For this research, BV2 and HT22 cells were cultured using adipcyte- and microglia-conditioned media, respectively. DBM effectively suppressed lipopolysaccharide-induced productions in inducible nitric oxide synthase and cyclooxygenase2. Interleukin (IL)-6, monocyte chemoattractant protein-1, IL-1ß, and tumor necrosis factor-α levels were also downregulated by DBM. In adipocyte-conditioned medium (ACM)-cultured BV2 cells, DBM effectively decreased ACM-induced generation of nitric oxide, reactive oxygen species, and inflammatory cytokines by activating nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling and reducing nuclear factor kappa-light-chain-enhancer of activated B cells. In BV2-conditioned medium (BVM)-cultured neuron cells, DBM recovered the BVM-induced reduction of neuronal cell viability, thereby regulating B-cell lymphoma 2 (BCL2), BCL2-associated X (BAX), and cleaved caspase-3 protein expression. Taken together, DBM suppressed adiposity-induced inflammation/oxidative responses and inflammation-induced neuronal cell death.

8.
Food Sci Biotechnol ; 31(4): 463-473, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35464248

ABSTRACT

Cinnamic acid (CiA) and phenylpropanoid derivatives are widely distributed in plant foods. In this study, anti- and pro-oxidant properties of the derivatives and their roles in modulating cell growth were investigated. Ferulic acid, sinapinic acid, caffeic acid (CaA), and 3,4-dihydroxyhydrocinnamic acid (DHC) showed strong radical scavenging activities. They, except DHC, also performed considerable inhibitory effects on lipid peroxidation and reduced levels of intracellular reactive oxygen species (ROS). CaA and DHC, however, produced substantial amount of H2O2 with oxidative degradation in culture conditions. CaA and DHC (> 400 µM) showed potent cytotoxic effects which were abolished by superoxide dismutase/catalase; they significantly enhanced cell growth ROS-dependently at low levels (~ 100 µM). CiA derivatives without bearing hydroxyl group did not show any appreciable antioxidant activities. The results indicate that CiA derivatives with ortho-dihydroxyl group had strong anti- and pro-oxidant properties, which also play an important role in modulating cell growth. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01042-x.

9.
Molecules ; 27(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408502

ABSTRACT

The activation of NLRP3 results in the assembly of inflammasome that regulates caspase-1 activation and the subsequent secretion of bioactive interleukin (IL)-1ß. Excessive activation of the NLRP3 inflammasome is mechanistically linked to diverse pathophysiological conditions, including airway inflammation. Here, we discovered that Curcuma phaeocaulis can suppress caspase-1 activation and processing of pro-IL-1ß into mature cytokine in macrophages stimulated with NLRP3 inflammasome activators, such as SiO2 or TiO2 nanoparticles. Furthermore, in the bronchoalveolar lavage fluids of animals administered the nanoparticles, the in vitro effects of C. phaeocaulis translated into a decrease in IL-1ß levels and cell infiltration. Demethoxycurcumin (DMC) and curcumin were found to be responsible for the inflammasome inhibitory activity of C. phaeocaulis. Interestingly, in contrast to the previously reported higher antioxidant- and NFκB-inhibitory activities of curcumin, DMC exhibited approximately two-fold stronger potency than curcumin against nanoparticle induced activation of NLRP3 inflammasome. In the light of these results, both compounds seem to act independently of their antioxidant- and NFκB-inhibitory properties. Although how C. phaeocaulis inhibits nanoparticle-activated NLRP3 inflammasome remains to be elucidated, our results provide a basis for further research on C. phaeocaulis extract as an anti-inflammatory agent for the treatment of disorders associated with excessive activation of NLRP3 inflammasome.


Subject(s)
Curcumin , Nanoparticles , Animals , Antioxidants/pharmacology , Caspase 1 , Caspases , Curcuma , Curcumin/pharmacology , Inflammasomes , Inflammation/chemically induced , Inflammation/drug therapy , Interleukin-1beta/pharmacology , Macrophages , Mice , NF-kappa B/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein , Silicon Dioxide/pharmacology
10.
Food Res Int ; 155: 111066, 2022 05.
Article in English | MEDLINE | ID: mdl-35400444

ABSTRACT

This study was conducted to investigate the effect of the paraprobiotics, lactic acid bacteria lysates (LAB-P) prepared from Lactiplantibacillus plantarum K8, on obesity and obesity-induced inflammatory responses in high-fat diet (HFD)-fed mice. LAB-P (100 mg/kg) significantly decreased the HFD-induced increase in weight by approximately 20% compared to that in the HFD control. This result was accompanied by a decrease in adipose weight/size. The white adipose tissue weight of epididymis, subcutaneous inguinal region, and mesentery were decreased by 36%, 20%, and 40%, respectively, in LAB-P (100 mg/kg)-administered mice. The size of the epididymal white adipose tissue-derived adipocytes was reduced by 41%. The LAB-P-mediated reduction in adipose tissues was associated with downregulation of adipogenic factors, such as peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα). In addition, LAB-P administration reduced total cholesterol and low-density lipoprotein levels by 23% and 42%, respectively, with a 55% reduction in lactate dehydrogenase levels. Stromal vascular fraction-derived adipose tissue macrophages were favorably regulated by LAB-P administration; the expression of CD11c, an inflammatory marker, was reduced by 30%, and that of CD206, an anti-inflammatory marker, was increased by 9-fold. These results were shown to correlated with the inhibition of proinflammatory cytokines (IL-1ß and IL-6) and downregulation of NF-κB expression. Furthermore, LAB-P administration suppressed HFD-induced fatty liver by activating AMPKα, an energy metabolic sensor. This study indicates that LAB-P effectively prevents HFD-induced obesity and obesity-induced inflammatory responses and serves a valuable basic work for utilizing LAB-P as functional food ingredient to preventing obesity and treating obesity-associated inflammatory diseases.


Subject(s)
Diet, High-Fat , Obesity , 3T3-L1 Cells , Adipocytes , Adipogenesis , Animals , Diet, High-Fat/adverse effects , Male , Mice , Obesity/metabolism , Obesity/prevention & control
11.
Int J Mol Sci ; 22(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805468

ABSTRACT

The aim of this study was to investigate the effect of Lactobacillus brevis-fermented γ-aminobutyric acid (LB-GABA) on sleep behaviors in invertebrate and vertebrate models. In Drosophila melanogaster, LB-GABA-treated group showed an 8-9%-longer sleep duration than normal group did. LB-GABA-treated group also showed a 46.7% lower level of nighttime activity with a longer (11%) sleep duration under caffeine-induced arousal conditions. The LB-GABA-mediated inhibition of activity was confirmed as a reduction of total movement of flies using a video tracking system. In the pentobarbital-induced sleep test in mice, LB-GABA (100 mg/kg) shortened the time of onset of sleep by 32.2% and extended sleeping time by 59%. In addition, mRNA and protein level of GABAergic/Serotonergic neurotransmitters were upregulated following treatment with LB-GABA (2.0%). In particular, intestine- and brain-derived GABAA protein levels were increased by sevenfold and fivefold, respectively. The electroencephalography (EEG) analysis in rats showed that LB-GABA significantly increased non-rapid eye movement (NREM) (53%) with the increase in theta (θ, 59%) and delta (δ, 63%) waves, leading to longer sleep time (35%), under caffeine-induced insomnia conditions. LB-GABA showed a dose-dependent agonist activity on human GABAA receptor with a half-maximal effective concentration (EC50) of 3.44 µg/mL in human embryonic kidney 293 (HEK293) cells.


Subject(s)
Sleep/drug effects , gamma-Aminobutyric Acid/pharmacology , Animals , Caffeine/pharmacology , Drosophila Proteins/genetics , Drosophila melanogaster , Electroencephalography , Fermentation , GABA-A Receptor Agonists/pharmacology , HEK293 Cells , Humans , Hypnotics and Sedatives/pharmacology , Levilactobacillus brevis/metabolism , Locomotion/drug effects , Male , Mice, Inbred ICR , Neurotransmitter Agents/metabolism , Pentobarbital/pharmacology , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism , Receptors, Neurotransmitter/genetics , Receptors, Neurotransmitter/metabolism , Sleep/physiology , Sleep Initiation and Maintenance Disorders/chemically induced , Sleep Initiation and Maintenance Disorders/drug therapy , gamma-Aminobutyric Acid/metabolism
12.
J Pharm Pharmacol ; 72(9): 1245-1255, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32441363

ABSTRACT

OBJECTIVES: The effects and molecular mechanisms of brassinin (BR), an indole phytoalexin from cruciferous vegetables, on monocyte-to-macrophage differentiation and inflammatory responses were investigated in this study. METHODS: Inflammatory responses from RAW264.7 cells and THP-1 were stimulated by lipopolysaccharide (1 µg/ml), and monocyte-to-macrophage differentiation of THP-1 was induced by phorbol myristate acetate (50 ng/ml). The production of inflammatory mediators was determined by ELISA, Western blot or real-time PCR. Reactive oxygen species were examined by DCFH-DA assay. KEY FINDINGS: Brassinin at 50 µm suppressed lipopolysaccharide-induced production of nitric oxide synthase, cyclooxygenase-2, prostaglandin E2 and reactive oxygen species by 90%, 69%, 52% and 41%, respectively, in RAW264.7 cells. In THP-1 cells, BR inhibited phorbol myristate acetate-induced monocyte-to-macrophage differentiation by suppressing cluster of differentiation molecule ß and CD36. In addition, BR suppressed translocation of nuclear factor 'kappa-light-chain-enhancer' of activated B cells (NF-κB) into the nucleus. However, BR activated the nuclear factor erythroid-derived 2-like 2 (Nrf2) and its target molecules hemoxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1), with an increase in nuclear translocation of Nrf2. CONCLUSIONS: Brassinin suppressed monocyte-to-macrophage differentiation and inflammatory responses by differentially regulating Nrf2 and NF-κB signallings.


Subject(s)
Indoles/pharmacology , Inflammation/drug therapy , Macrophages/drug effects , Monocytes/drug effects , Thiocarbamates/pharmacology , Animals , Brassica/chemistry , Cell Differentiation/drug effects , Humans , Indoles/isolation & purification , Inflammation/pathology , Inflammation Mediators/metabolism , Lipopolysaccharides , Macrophages/pathology , Mice , Monocytes/cytology , Monocytes/pathology , RAW 264.7 Cells , Reactive Oxygen Species , THP-1 Cells , Thiocarbamates/isolation & purification
13.
Biosci Biotechnol Biochem ; 84(9): 1799-1809, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32448093

ABSTRACT

Various mixtures were prepared depending on the mixing ratio of Scutellaria baicalensis hot water extract (SB-HW), and Chrysanthemum morifolium ethanol extract (CM-E) and their anti-inflammatory activity were compared. Among them, SB-HW (80 µg/mL)/CM-E (120 µg/mL) or SB-HW (40 µg/mL)/CM-E (160 µg/mL) significantly inhibited LPS-stimulated NO and IL-6 levels in RAW 264.7 cells. The SB-HW (80 µg/mL)/CM-E (120 µg/mL) mixture, which was determined as active mixture, significantly reduced MUC5AC secretion in PMA and LPS-induced NCI-H292 cells. The active mixture also reduced the production of PGE2 and IL-8 in PMA-induced A549 cells. LC-MS/MS analysis showed that the active mixture was composed of high contents of flavone glycosides, such as baicalin and cynaroside. Western blot analysis indicated that the active mixture suppressed phosphorylation of ERK, JNK, and p38, associating with the inhibition of MAPK signaling. Taken together, our results suggest that the active mixture could be applied as a new anti-inflammatory herbal medicine. ABBREVIATIONS: JNK: c-Jun N-terminal kinases; COPD: chronic obstructive pulmonary disease; CM: Chrysanthemum morifolium; COX-2: cyclooxygenase-2; ERK: extracellular-signal-regulated kinase; IL-6: interleukin-6; IL-8: interleukin-8; IL-12: interleukin-12; LPS: lipopolysaccharide; MAPK: mitogen-activated protein kinase; NO: nitric oxide; NK- κB: nuclear factor kappa B; p38: p38 mitogen-activated protein kinases; PBS: phosphate buffered saline; PMA: phorbol-12-myristate-13-acetate; SB: Scutellaria baicalensis; PGE2: prostaglandin E2; TBST: Tris-buffered saline containing 0.1% Tween 20; TIC: total ion chromatogram; TNF-α: tumor necrosis factor-alpha.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Chrysanthemum/chemistry , Herbal Medicine , Plant Extracts/pharmacology , Scutellaria/chemistry , A549 Cells , Animals , Anti-Inflammatory Agents/chemistry , Dose-Response Relationship, Drug , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Mice , Nitric Oxide/metabolism , Phosphorylation/drug effects , Plant Extracts/chemistry , RAW 264.7 Cells
14.
Food Sci Biotechnol ; 29(3): 431-440, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32257527

ABSTRACT

The effects of parthenolide (PL), a sesquiterpene lactone obtained from feverfew plant, on lipid accumulation and signaling pathway in adipocytes were investigated. PL significantly inhibited lipid accumulation and adipogenic factors during adipogenesis. In particular, PL exerted its inhibitory effects in early adipogenic stage by regulating the early adipogenic factors. In addition, PL regulated the expression of adipokines; leptin, retinol binding protein, and resistin mRNAs were downregulated, whereas adiponectin gene expression was increased. Furthermore, PL significantly reduced intracellular reactive oxygen species (ROS) production during adipogenesis. This PL-mediated regulation of ROS production was associated with the regulation of nuclear factor erythroid 2-related factor (Nrf2)-kelch-like ECH-associated protein 1 (Keap1) pathway. PL effectively increased the abundance of Nrf2 and its target proteins, heme oxygenase-1 (HO-1) and NADPH dehydrogenase 1 (NQO1), by promoting the nuclear translocation of Nrf2, indicating that PL-mediated anti-adipogenic effects are associated with the Nrf2/Keap1 pathway.

15.
Food Sci Biotechnol ; 28(6): 1819-1828, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31807355

ABSTRACT

This study was aimed to investigate the effect of red ginseng extract (RGE) on monocyte to macrophage differentiation and inflammatory signalings in THP-1 human monocytes. In HPLC analysis, RGE contained saponin level of 516 µg/mg (extract) with 14 ginsenosides. RGE effectively suppressed the monocyte-to-macrophage differentiation induced by phorbol 12-myristate 13-acetated (PMA) by inhibiting the THP-1 cell adhesion. This result is evidenced by the down-regulation of cluster of differentiation molecule ß (CD11ß) and CD36. RGE significantly reduced translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) (78%), while cytosolic NF-κB was increased (53%), compared with LPS group. In addition, RGE significantly increased the protein abundance of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its target protein, hemoxygenase-1 (HO-1), but, Kelch-like ECH-associated protein 1 (KEAP1), a negative regulator of Nrf2, was greatly decreased by RGE. Furthermore, RGE effectively mediated the regulation of Nrf2 level in nucleus and cytoplasm of THP-1.

16.
Biol Pharm Bull ; 42(10): 1726-1732, 2019.
Article in English | MEDLINE | ID: mdl-31582660

ABSTRACT

This study was conducted to investigate the effects of the extracts of green romaine lettuce (GRE) on sleep enhancement. GRE contains 1071.7 and 199.2 µg/g of extracts of lactucin and lactucopicrin, respectively, known as sleep enhancement substances. When 100 mg/kg of GRE was administered orally, sleep latency and duration time were significantly increased compared to controls (p < 0.05). Rapid eye movement (REM) sleep decreased with 100 mg/kg of GRE administration and non-REM (NREM) sleep also increased. There was no significant difference between REM and NREM among the oral GRE administration groups receiving 100, 120, and 160 mg/kg GRE. In the caffeine-induced insomnia model, total sleep time was significantly increased by 100 mg/kg GRE administration compared to the caffeine-treated group (p < 0.05). In addition, GRE inhibited the binding of [3H]-flumazenil in a concentration-dependent manner, and affinity of both lactucin and lactucopicrin to gamma-aminobutyric acid (GABA)A-benzodiazepine (BDZ) receptor was 80.7% and 55.9%, respectively. Finally, in the pentobarbital-induced sleep mouse model, the sleep enhancement effect of GRE was inhibited by flumazenil, an antagonist of BDZ. Thus, these results demonstrate that GRE acts via a GABAergic mechanism to promote sleep in a rodent model.


Subject(s)
Lactones/pharmacology , Lactuca , Phorbols/pharmacology , Plant Extracts/pharmacology , Sesquiterpenes/pharmacology , Sleep/drug effects , Animals , Lactones/analysis , Male , Mice, Inbred ICR , Phorbols/analysis , Plant Extracts/chemistry , Plant Leaves , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism , Sesquiterpenes/analysis
17.
J Sci Food Agric ; 99(15): 6806-6813, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31368526

ABSTRACT

BACKGROUND: Enzymatic hydrolysis and high hydrostatic pressure (HHP) are common processing techniques in the extraction of active compounds from food materials. The aim of this study was to investigate the effects of enzymatic hydrolysis combined with HHP treatments on ginsenoside metabolites in red ginseng. RESULTS: The yield and changes in the levels of polyphenol and ginsenoside were measured in red ginseng treated with commercial enzymes such as Ultraflo L, Viscozyme, Cytolase PCL5, Rapidase and Econase E at atmospheric pressure (0.1 MPa), 50 MPa, and 100 MPa. ß-Glucosidase activity of Cytolase was the highest at 4258.2 mg-1 , whereas Viscozyme showed the lowest activity at 10.6 mg-1 . Pressure of 100 MPa did not affect the stability or the activity of the ß-glucosidase. Treatment of red ginseng with Cytolase and Econase at 100 MPa significantly increased the dry weight and polyphenol content of red ginseng, compared with treatments at 0.1 MPa and 50 MPa (P < 0.05). The amounts of ginsenoside and ginsenoside metabolites derived from red ginseng processed using Cytolase were higher than those derived from red ginseng treated with the other enzymes. Treatment with Cytolase also significantly increased the skin and intestinal permeability of red ginseng-derived polyphenols. CONCLUSION: Cytolase could be useful as an enzymatic treatment to enhance the yield of bioactive compounds from ginseng under HHP. In addition, ginsenoside metabolites obtained by Cytolase hydrolysis combined with HHP are functional substances with increased intestinal and skin permeability. © 2019 Society of Chemical Industry.


Subject(s)
Enzymes/chemistry , Food Handling/methods , Ginsenosides/chemistry , Ginsenosides/metabolism , Panax/chemistry , Plant Extracts/chemistry , Plant Extracts/metabolism , Animals , Biocatalysis , Hydrolysis , Hydrostatic Pressure , Intestinal Mucosa/metabolism , Male , Panax/metabolism , Rats , Rats, Sprague-Dawley , Skin/metabolism
18.
Mol Nutr Food Res ; 63(22): e1900574, 2019 11.
Article in English | MEDLINE | ID: mdl-31444955

ABSTRACT

SCOPE: Punicalagin (PCG) is one of the most abundant phytochemicals found in pomegranates. The effects and mechanistic action of PCG on obesity and obesity-induced inflammatory and oxidant responses are investigated in vitro and in vivo. METHODS AND RESULTS: The effect of PCG on adipogenesis is examined using Oil red O staining. The effects and mechanism of action of PCG on inflammatory responses are determined in adipocyte-conditioned medium (ACM)-cultured macrophages, a cell-to-cell contact system, and a transwell system. The effects of PCG on obesity and obesity-induced inflammatory/oxidant responses are examined in high-fat diet (HFD)-fed mice. PCG effectively suppresses lipid accumulation in adipocytes and adipocyte-induced inflammatory responses in adipocyte-macrophage co-culture systems. Small interfering RNA (siRNA) transfection indicates that the PCG-mediated anti-inflammatory effect is exerted via the nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1(Nrf2/Keap1) pathway. PCG administration results in a significant reduction in body and white adipose tissue (WAT) weights. PCG favorably regulates pro- and anti-inflammatory cytokines, downregulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Immunohistochemical (IHC) analysis demonstrates that PCG differentially modulates the distribution of complement component 3 receptor 4 subunit (CD11c) and cluster of differentiation 206 (CD206). PCG regulates the level of antioxidant and oxidant molecules by activating Nrf2/Keap1 signaling. CONCLUSIONS: PCG ameliorates obesity and obesity-induced inflammatory responses via activation of Nrf2/Keap1 signaling, suggesting that PCG has potential as an oral agent to control obesity-mediated diseases.


Subject(s)
Hydrolyzable Tannins/pharmacology , Inflammation/prevention & control , Kelch-Like ECH-Associated Protein 1/physiology , NF-E2-Related Factor 2/physiology , Obesity/prevention & control , 3T3-L1 Cells , Adipogenesis/drug effects , Animals , Heme Oxygenase-1/physiology , Male , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
19.
Pharmacol Res ; 145: 104259, 2019 07.
Article in English | MEDLINE | ID: mdl-31078744

ABSTRACT

Parthenolide (PL) is one of the most abundant sesquiterpene lactones found in the plant feverfew (Tanacetum parthenium (L.) Sch.Bip.). PL was investigated for its effect on obesity and obesity-induced inflammatory/oxidant responses in vitro and in vivo. An obesity-induced inflammatory response was induced in various co-culture systems using adipocytes (3T3-L1) and macrophages (RAW264.7) in vitro and the effect of PL and its mechanism of action were determined. PL effectively suppressed the adiposity-induced inflammatory responses by downregulating IL-6 (40-42%) and MCP-1 (26-37%) in 3T3-CM-cultured macrophages and contact co-culture system. PL also favorably regulated the dysregulations of adiponectin and resistin in macrophage-conditioned medium (RAW-CM)-cultured adipocytes. In transwell system of adipocyte and macrophage, PL was shown to upregulated Nrf2 and its target molecule, HO-1 by promoting nuclear translocation of Nrf2. In particular, in siRNA knockdown study, the PL-mediated anti-inflammatory response was exerted via the Nrf2/Keap1 pathway. In animal study using high-fat diet (HFD)-fed mice, PL-administered mice showed a significant reduction in body weight and white adipose tissues (WATs). This PL-mediated anti-obese effect was connected to anti-inflammatory responses with the regulation of inflammatory cytokines, and the downregulation of NF-κB and MAPKs. Furthermore, PL differentially modulated CD11c and CD206, which are pro-/anti-inflammatory phenotypes of ATMs, in stroma vascular fraction (SVF) and immunohistochemistry (IHC) staining analyses. PL also regulated the level of (anti)oxidant molecules with the activation of Nrf2/Keap1signaling. Taken together, PL inhibited obesity and obesity-induced inflammatory responses via the activation of Nrf2/Keap1 signaling, indicating a potential of PL as a functional agent to control obesity-related diseases.


Subject(s)
Anti-Inflammatory Agents , Anti-Obesity Agents , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Obesity/drug therapy , Obesity/metabolism , Sesquiterpenes , 3T3-L1 Cells , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Diet, High-Fat , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Signal Transduction/drug effects , Tanacetum parthenium
20.
Phytother Res ; 33(5): 1426-1437, 2019 May.
Article in English | MEDLINE | ID: mdl-30848529

ABSTRACT

The aim of this study was to investigate the effect of brassinin (BR), a phytoalexin found in plants belonging to the Brassicaceae family, on the obesity-induced inflammatory response and its molecular mechanism in co-culture of 3T3-L1 adipocytes and RAW264.7 macrophages. BR effectively suppressed lipid accumulation by down-regulating the expression of adipogenic factors, which in turn, were regulated by early adipogenic factors such as CCAAT-enhancer-binding protein-ß and Kruppel-like factor 2. Production of inflammatory cytokines and reactive oxygen species, induced by adipocyte-conditioned medium, was significantly decreased in BR-treated cells. This effect of BR was more prominent in contact co-culture of adipocytes and macrophages with a 90% and 34% reduction in IL-6 and MCP-1 levels, respectively. BR also restored adiponectin expression, which was significantly reduced by culturing adipocytes in macrophage-conditioned medium. In the transwell system, BR increased the protein levels of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its target molecule, hemoxygenase-1 (HO-1), by 55%-93% and 45%-48%, respectively, and also increased Nrf2 translocation into the nucleus. However, knockdown of Nrf2 or HO-1 in RAW264.7 cells restored this BR-mediated inhibition of IL-6 and MCP-1 production. These results indicated that BR inhibited obesity-induced inflammation via the Nrf2-HO-1 pathway.


Subject(s)
Adipocytes/drug effects , Heme Oxygenase-1/metabolism , Indoles/pharmacology , NF-E2-Related Factor 2/metabolism , Thiocarbamates/pharmacology , 3T3-L1 Cells , Adipogenesis/drug effects , Animals , Brassicaceae/chemistry , Coculture Techniques , Cytokines/metabolism , Macrophages/drug effects , Mice , Obesity/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL
...