Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Toxicology ; : 153877, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969275

ABSTRACT

Cetylpyridinium chloride (CPC) is a quaternary ammonium compound used widely in health and personal care products. Meanwhile, due to its increasing use, its potential adverse health effects are emerging as a topic of public concern. In this study, we first administered CPC by pharyngeal aspiration to determine the survival level (the maximum concentration at which no death is observed) and then administered CPC to mice repeatedly for 28 days using the survival level as the highest concentration. CPC increased the total number of pulmonary cells secreting pro- and anti-inflammatory cytokines and chemokines. Infiltration of inflammatory cells, production of foamy alveolar macrophages, and chronic inflammatory lesions were found in the lung tissue of male and female mice exposed to the highest dose of CPC. We also investigated the toxicity mechanism using BEAS-2B cells isolated from normal human bronchial epithelium. At 6h after exposure to CPC, the cells underwent non-apoptotic cell death, especially at concentrations greater than 2µg/mL. The expression of the transferrin receptor was remarkably enhanced, and the expression of proteins that contribute to intracellular iron storage was inhibited. The expression of both mitochondrial SOD and catalase increased with CPC concentration, and PARP protein was cleaved, suggesting possible DNA damage. In addition, the internal structure of mitochondria was disrupted, and fusion between damaged organelles was observed in the cytoplasm. Most importantly, lamellar body-like structures and autophagosome-like vacuoles were found in CPC-treated cells, with enhanced expression of ABCA3 protein, a marker for lamellar body, and a docking score between ABCA3 protein and CPC was considered to be approximately -6.8969kcal/mol. From these results, we propose that mitochondrial damage and iron depletion may contribute to CPC-induced non-apoptotic cell death and that pulmonary accumulation of cell debris may be closely associated with the inflammatory response. Furthermore, we hypothesize that the formation of lamellar body-like structures may be a trigger for CPC-induced cell death.

2.
Mol Neurobiol ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801629

ABSTRACT

Dementia is a syndrome exhibiting progressive impairments on cognition and behavior beyond the normal course of aging, and Alzheimer's disease (AD) is one of the neurodegenerative diseases known to cause dementia. We investigated the effect of KGC07EH, the 30% ethanol extract of Euonymus hamiltonianus, against amyloid-ß (Aß) production and cognitive dysfunction in dementia models. KGC07EH was treated on Hela cells expressing the Swedish mutant form of amyloid precursor protein (APP), and the AD triple transgenic (3× TG) mice were given KGC07EH orally during 11-14 months of age (100 and 300 mg/kg/day). SH-SY5Y cell line was used to test KGC07EH on scopolamine-induced elevation of acetylcholinesterase (AChE) activity. ICR mice were intraperitoneally injected with scopolamine, and KGC07EH was administered orally (50, 100, and 200 mg/kg/day) for 4 weeks. KGC07EH treatment decreased Aß, sAPPß-sw, and sAPPß-wt levels and APP protein expressions while sAPPα was increased in Swedish mutant-transfected HeLa cells. KGC07EH treatment also significantly reduced the accumulation of Aß plaques and tau tangles in the brain of 3× TG mice as well as improving the cognitive function. In SH-SY5Y cells cultured with scopolamine, KGC07EH dose-dependently attenuated the increase of AChE activity. KGC07EH also improved scopolamine-induced learning and memory impairment in scopolamine-injected mice, and in their cerebral cortex and hippocampus, the expression levels of p-ERK, p-CREB, p-Akt, and BDNF were attenuated. KGC07EH inhibits APP processing and Aß production both in vitro and in vivo, while enhancing acetylcholine signaling and cognitive dysfunction which are the major symptoms of dementia.

3.
Sci Adv ; 8(43): eabk1239, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36306352

ABSTRACT

Amphibians and fish show considerable regeneration potential via dedifferentiation of somatic cells into blastemal cells. In terms of dedifferentiation, in vitro cellular reprogramming has been proposed to share common processes with in vivo tissue regeneration, although the details are elusive. Here, we identified the cytoskeletal linker protein desmoplakin (Dsp) as a common factor mediating both reprogramming and regeneration. Our analysis revealed that Dsp expression is elevated in distinct intermediate cells during in vitro reprogramming. Knockdown of Dsp impedes in vitro reprogramming into induced pluripotent stem cells and induced neural stem/progenitor cells as well as in vivo regeneration of zebrafish fins. Notably, reduced Dsp expression impairs formation of the intermediate cells during cellular reprogramming and tissue regeneration. These findings suggest that there is a Dsp-mediated evolutionary link between cellular reprogramming in mammals and tissue regeneration in lower vertebrates and that the intermediate cells may provide alternative approaches for mammalian regenerative therapy.


Subject(s)
Induced Pluripotent Stem Cells , Neural Stem Cells , Animals , Cellular Reprogramming/genetics , Desmoplakins/genetics , Zebrafish , Mammals
4.
Transplant Proc ; 54(7): 2025-2034, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35977851

ABSTRACT

BACKGROUND: Calcineurin inhibitors (CNIs), which are potent immunosuppressants (ISs), increase the risk for hepatocellular carcinoma (HCC) recurrence after liver transplantation (LTx). Epithelial-mesenchymal transition (EMT) is a key process in which epithelial cancer cells lose their polarity, resulting in cancer progression and metastasis. The aim of this study was to evaluate the effect of sirolimus (SRL) individually and in combination with other ISs to reduce EMT. METHODS: HCC SK-Hep1 cells were used and various ISs (SRL, tacrolimus, cyclosporine A, or mycophenolate mofetil) were administered at 2 dosages and in combination therapies. Mice were transplanted with SK-Hep1 cells (in the liver) and were monitored after 2 weeks. RESULTS: The in vitro treatment with SRL showed a dose-dependent attenuation of cell proliferation and migration in case of the individual and IS combination treatments; further, decreased levels of pro-EMT proteins, namely, N-cadherin, transforming growth factor-ß, ZEB1, Slug, and Snail were observed. In contrast, E-cadherin expression was upregulated after both the individual and IS combination treatments. These results were also observed in the samples from mice transplanted with the SK-Hep1 cells. CONCLUSION: The present study demonstrated that SRL reduced HCC metastasis by inhibiting EMT. Thus, our findings provide a rationale for the use of SRL in combination with ISs in HCC LTx patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/pathology , Calcineurin Inhibitors/pharmacology , Epithelial-Mesenchymal Transition , Sirolimus/pharmacology , Liver Neoplasms/pathology , Immunosuppressive Agents/pharmacology , Cell Line, Tumor
5.
J Immunol ; 207(7): 1735-1746, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34462314

ABSTRACT

The house dust mite is the most common cause of allergic diseases, and TLR4 acts as an overarching receptor for allergic responses. This study aimed to identify novel allergen binding to TLR4 in house dust mites and unveil its unique role in allergic responses. Der p 38 was purified and characterized by liquid chromatography tandem mass spectrometry-based peptide mapping. Biolayer interferometry and structure modeling unveiled TLR4-binding activity and the structure of recombinant Der p 38. The allergenicity of Der p 38 was confirmed by a skin prick test, and basophil activation and dot blot assays. The skin prick test identified 24 out of 45 allergic subjects (53.3%) as Der p 38+ subjects. Der p 38-augmented CD203c expression was noted in the basophils of Der p 38+ allergic subjects. In animal experiments with wild-type and TLR4 knockout BALB/c mice, Der p 38 administration induced the infiltration of neutrophils as well as eosinophils and exhibited clinical features similar to asthma via TLR4 activation. Persistent Der p 38 administration induced severe neutrophil inflammation. Der p 38 directly suppressed the apoptosis of allergic neutrophils and eosinophils, and enhanced cytokine production in human bronchial epithelial cells, inhibiting neutrophil apoptosis. The mechanisms involved TLR4, LYN, PI3K, AKT, ERK, and NF-κB. These findings may contribute to a deep understanding of Der p 38 as a bridge allergen between eosinophilic and neutrophilic inflammation in the pathogenic mechanisms of allergy.


Subject(s)
Antigens, Dermatophagoides/immunology , Eosinophils/immunology , Hypersensitivity/immunology , Neutrophils/physiology , Respiratory Mucosa/immunology , Animals , Antigens, Dermatophagoides/isolation & purification , Cells, Cultured , Disease Models, Animal , Epitope Mapping , Female , Humans , Immunomodulation , Mice , Mice, Inbred BALB C , Mice, Knockout , Neutrophil Activation , Protein Binding , Signal Transduction , Skin Tests , Toll-Like Receptor 4/metabolism
6.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34445142

ABSTRACT

It is difficult to treat allergic diseases including asthma completely because its pathogenesis remains unclear. House dust mite (HDM) is a critical allergen and Toll-like receptor (TLR) 4 is a member of the toll-like receptor family, which plays an important role in allergic diseases. The purpose of this study was to characterize a novel allergen, Der f 38 binding to TLR4, and unveil its role as an inducer of allergy. Der f 38 expression was detected in the body and feces of Dermatophagoides farinae (DF). Electron microscopy revealed that it was located in the granule layer, the epithelium layer, and microvilli of the posterior midgut. The skin prick test showed that 60% of allergic subjects were Der f 38-positive. Der f 38 enhanced surface 203c expression in basophils of Der f 38-positive allergic subjects. By analysis of the model structure of Der p 38, the expected epitope sites are exposed on the exterior side. In animal experiments, Der f 38 triggered an infiltration of inflammatory cells. Intranasal (IN) administration of Der f 38 increased neutrophils in the lung. Intraperitoneal (IP) and IN injections of Der f 38 induced both eosinophils and neutrophils. Increased total IgE level and histopathological features were found in BALB/c mice treated with Der f 38 by IP and IN injections. TLR4 knockout (KO) BALB/c mice exhibited less inflammation and IgE level in the sera compared to wild type (WT) mice. Der f 38 directly binds to TLR4 using biolayer interferometry. Der f 38 suppressed the apoptosis of neutrophils and eosinophils by downregulating proteins in the proapoptotic pathway including caspase 9, caspase 3, and BAX and upregulating proteins in the anti-apoptotic pathway including BCL-2 and MCL-1. These findings might shed light on the pathogenic mechanisms of allergy to HDM.


Subject(s)
Allergens/immunology , Antigens, Dermatophagoides/immunology , Arthropod Proteins/immunology , Dermatophagoides farinae/immunology , Hypersensitivity/immunology , Protein Binding/immunology , Toll-Like Receptor 4/immunology , Amino Acid Sequence , Animals , Epitopes/immunology , Female , Humans , Immunoglobulin E/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Pyroglyphidae/metabolism , Skin Tests/methods
7.
Materials (Basel) ; 13(19)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003589

ABSTRACT

Propionic acid is a metabolite of the microbiome and can be transported to the brain. Previous data show that propionic acid changes mitochondrial biogenesis in SH-SY5Y cells and induces abnormal autophagy in primary hippocampal neurons. Maintaining mitochondrial function is key to homeostasis in neuronal cells, and mitophagy is the selective autophagy involved in regulating mitochondrial quality. Monitoring mitophagy though light microscopy or conventional transmission electron microscopy separately is insufficient because phases of mitophagy, including autophagosome and autolysosome in nano-resolution, are critical for studies of function. Therefore, we used correlative light and electron microscopy to investigate mitochondrial quality in SH-SY5Y cells after propionic acid treatment to use the advantages of both techniques. We showed, with this approach, that propionic acid induces mitophagy associated with mitochondrial quality.

8.
Mol Brain ; 13(1): 86, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32487196

ABSTRACT

Propionic acid (PPA) is a short-chain fatty acid that is an important mediator of cellular metabolism. It is also a by-product of human gut enterobacteria and a common food preservative. A recent study found that rats administered with PPA showed autistic-like behaviors like restricted interest, impaired social behavior, and impaired reversal in a T-maze task. This study aimed to identify a link between PPA and autism phenotypes facilitated by signaling mechanisms in hippocampal neurons. Findings indicated autism-like pathogenesis associated with reduced dendritic spines in PPA-treated hippocampal neurons. To uncover the mechanisms underlying this loss, we evaluated autophagic flux, a functional readout of autophagy, using relevant biomedical markers. Results indicated that autophagic flux is impaired in PPA-treated hippocampal neurons. At a molecular level, the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway was activated and autophagic activity was impaired. We also observed that a MAPK inhibitor rescued dendritic spine loss in PPA-treated hippocampal neurons. Taken together, these results suggest a previously unknown link between PPA and autophagy in spine formation regulation in hippocampal neurons via MAPK/ERK signaling. Our results indicate that MAPK/ERK signaling participates in autism pathogenesis by autophagy disruption affecting dendritic spine density. This study may help to elucidate other mechanisms underlying autism and provide a potential strategy for treating ASD-associated pathology.


Subject(s)
Autophagy/drug effects , Dendritic Spines/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System/drug effects , Propionates/pharmacology , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Biomarkers/metabolism , Dendritic Spines/drug effects , Dendritic Spines/ultrastructure , Flavonoids/pharmacology , Hippocampus/pathology , Lysosomes/drug effects , Lysosomes/metabolism , Phenotype , Rats
9.
Autophagy ; 16(3): 512-530, 2020 03.
Article in English | MEDLINE | ID: mdl-31234698

ABSTRACT

Macroautophagy/autophagy is generally regarded as a cytoprotective mechanism, and it remains a matter of controversy whether autophagy can cause cell death in mammals. Here, we show that chronic restraint stress suppresses adult hippocampal neurogenesis in mice by inducing autophagic cell death (ACD) of hippocampal neural stem cells (NSCs). We generated NSC-specific, inducible Atg7 conditional knockout mice and found that they had an intact number of NSCs and neurogenesis level under chronic restraint stress and were resilient to stress- or corticosterone-induced cognitive and mood deficits. Corticosterone treatment of adult hippocampal NSC cultures induced ACD via SGK3 (serum/glucocorticoid regulated kinase 3) without signs of apoptosis. Our results demonstrate that ACD is biologically important in a mammalian system in vivo and would be an attractive target for therapeutic intervention for psychological stress-induced disorders.Abbreviations: AAV: adeno-associated virus; ACD: autophagic cell death; ACTB: actin, beta; Atg: autophagy-related; ASCL1/MASH1: achaete-scute family bHLH transcription factor 1; BafA1: bafilomycin A1; BrdU: Bromodeoxyuridine/5-bromo-2'-deoxyuridine; CASP3: caspase 3; cKO: conditional knockout; CLEM: correlative light and electron microscopy; CORT: corticosterone; CRS: chronic restraint stress; DAB: 3,3'-diaminobenzidine; DCX: doublecortin; DG: dentate gyrus; GC: glucocorticoid; GFAP: glial fibrillary acidic protein; HCN: hippocampal neural stem; i.p.: intraperitoneal; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MKI67/Ki67: antigen identified by monoclonal antibody Ki 67; MWM: Morris water maze; Nec-1: necrostatin-1; NES: nestin; NR3C1/GR: nuclear receptor subfamily 3, group C, member 1; NSC: neural stem cell; PCD: programmed cell death; PFA: paraformaldehyde; PX: Phox homology; PtdIns3P: phosphatidylinositol-3-phosphate; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; SGK: serum/glucocorticoid-regulated kinases; SGZ: subgranular zone; SOX2: SRY (sex determining region Y)-box 2; SQSTM1: sequestosome 1; STS: staurosporine; TAM: tamoxifen; Ulk1: unc-51 like kinase 1; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling; VIM: vimentin; WT: wild type; ZFYVE1: zinc finger, FYVE domain containing 1; Z-VAD/Z-VAD-FMK: pan-caspase inhibitor.


Subject(s)
Autophagy , Cognition Disorders/pathology , Hippocampus/pathology , Neural Stem Cells/pathology , Neurogenesis , Stress, Physiological , Animals , Anxiety/complications , Apoptosis , Autophagy-Related Protein 7/deficiency , Autophagy-Related Protein 7/metabolism , Cognition Disorders/complications , Corticosterone/administration & dosage , Depression/complications , Doublecortin Protein , Gene Deletion , Gene Silencing , Immediate-Early Proteins/metabolism , Mice, Knockout , Necroptosis , Neural Stem Cells/metabolism , Protein Serine-Threonine Kinases/metabolism
10.
Autophagy ; 16(9): 1598-1617, 2020 09.
Article in English | MEDLINE | ID: mdl-31818185

ABSTRACT

CASP9 (caspase 9) is a well-known initiator caspase which triggers intrinsic apoptosis. Recent studies also suggest various non-apoptotic roles of CASP9, including macroautophagy/autophagy regulation. However, the involvement of CASP9 in autophagy and its molecular mechanisms are not well understood. Here we report the non-apoptotic function of CASP9 in positive regulation of autophagy through maintenance of mitochondrial homeostasis. Growth factor or amino acid deprivation-induced autophagy activated CASP9, but without apoptotic features. Pharmacological inhibition or genetic ablation of CASP9 decreased autophagy flux, while ectopic expression of CASP9 rescued autophagy defects. In CASP9 knockout (KO) cells, initiation and elongation of phagophore membranes were normal, but sealing of the membranes and autophagosome maturation were impaired, and the lifetime of autophagosomes was prolonged. Ablation of CASP9 caused an accumulation of inactive ATG3 and decreased lipidation of the Atg8-family members, most severely that of GABARAPL1. Moreover, it resulted in abnormal mitochondrial morphology with depolarization of the membrane potential, reduced reactive oxygen species production, and aberrant accumulation of mitochondrial fusion-fission proteins. CASP9 expression or exogenously added H2O2 in the CASP9 KO cells corrected the ATG3 level and lipidation status of Atg8-family members, and restored autophagy flux. Of note, only CASP9 expression but not H2O2 rescued mitochondrial defects, revealing regulation of mitochondrial homeostasis by CASP9. Our findings suggest a new regulatory link between mitochondria and autophagy through CASP9 activity, especially for the proper operation of the Atg8-family conjugation system and autophagosome closure and maturation. ABBREVIATIONS: AA: amino acid; ACD: autophagic cell death; ACTB: actin beta; ANXA5: annexin A5; APAF1: apoptotic peptidase activating factor 1; Atg: autophagy related; ATG16L1: autophagy related 16 like 1; BafA1: bafilomycin A1; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; CARD: caspase recruitment domain containing; CASP: caspase; CM-H2DCFDA: chloromethyl-2',7'-dichlorodihydrofluorescein diacetate; Δψm: mitochondrial membrane potential; DN: dominant-negative; DNM1L/DRP1: dynamin 1 like; EBSS: Earle's balanced salt solution; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; HCN: hippocampal neural stem cells; IAM: inner autophagosome membrane; INS: insulin; KO: knockout; LEHD: Z-LEHD-fmk; MAP1LC3: microtubule associated protein 1 light chain 3; MFN1: mitofusin 1; MFN2: mitofusin 2; MTORC1: mechanistic target of rapamycin kinase complex 1; PARP1: poly(ADP-ribose) polymerase 1; PBS: phosphate-buffered saline; PE: phosphatidylethanolamine; ROS: reactive oxygen species; sgRNA: single guide RNA; SR-SIM: super-resolution structured illumination microscopy; SQSTM1: sequestosome 1; STS: staurosporine; STX17: syntaxin 17; TMRE: tetramethylrhodamine ethyl ester; TUBB: tubulin beta class I; ULK1: unc-51 like autophagy activating kinase 1; WT: wild type; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.


Subject(s)
Autophagosomes/metabolism , Caspase 9/metabolism , Homeostasis , Mitochondria/metabolism , Animals , Apoptotic Protease-Activating Factor 1/metabolism , Autophagy , Caspase 9/deficiency , HeLa Cells , Hippocampus/cytology , Humans , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Models, Biological , Neural Stem Cells/metabolism , Rats , Reactive Oxygen Species/metabolism
11.
Neurotoxicology ; 75: 116-122, 2019 12.
Article in English | MEDLINE | ID: mdl-31526819

ABSTRACT

Studies in animal models have shown that the short-chain fatty acid, propionic acid (PPA), interferes with mitochondrial metabolism leading to mitochondrial dysfunction and behavioral abnormalities. The aim of this study was to investigate the effects of PPA on mitochondrial function and gene expression in neuronal cells. SH-SY5Y cells and normal human neural progenitor (NHNP) cells were exposed to 1, 5 mM PPA for 4 or 24 h and we found that the mitochondrial potential measured in SH-SY5Y cells decreased in a dose-dependent manner after PPA treatment. Electron microscopy analysis revealed that the size of the mitochondria was significantly reduced following PPA treatment. A dose-dependent increase in the mitochondrial DNA copy number was observed in the PPA-treated cells. The expression of the mitochondrial biogenesis-related proteins PGC-1α, TFAM, SIRT3, and COX4 was significantly increased after PPA treatment. Transcriptome analysis revealed that mRNA expression in the notch signaling-related genes ASCL1 and LFNG changed after PPA treatment and the positive correlated protein expression changes were also observed. These results revealed that PPA treatment may affect neurodevelopment by altering mitochondrial function and notch signaling-related gene expression.


Subject(s)
Mitochondria/drug effects , Neurons/drug effects , Propionates/toxicity , Blotting, Western , Cell Line, Tumor , Gene Expression/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Microscopy, Electron, Transmission , Mitochondria/metabolism , Mitochondria/ultrastructure , Neurons/metabolism , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Receptors, Notch/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Transcriptome/drug effects
12.
Nat Commun ; 10(1): 3776, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31420557

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Nat Commun ; 10(1): 3185, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31320625

ABSTRACT

Unfolded protein response (UPR) is an adaptive mechanism that aims at restoring ER homeostasis under severe environmental stress. Malignant cells are resistant to environmental stress, which is largely due to an activated UPR. However, the molecular mechanisms by which different UPR branches are selectively controlled in tumor cells are not clearly understood. Here, we provide evidence that PRKCSH, previously known as glucosidase II beta subunit, functions as a regulator for selective activation of the IRE1α branch of UPR. PRKCSH boosts ER stress-mediated autophosphorylation and oligomerization of IRE1α through mutual interaction. PRKCSH contributes to the induction of tumor-promoting factors and to tumor resistance to ER stress. Increased levels of PRKCSH in various tumor tissues are positively correlated with the expression of XBP1-target genes. Taken together, our data provide a molecular rationale for selective activation of the IRE1α branch in tumors and adaptation of tumor cells to severe environmental stress.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Transformation, Neoplastic/pathology , Endoplasmic Reticulum Stress/physiology , Endoribonucleases/metabolism , Glucosidases/metabolism , Protein Serine-Threonine Kinases/metabolism , Unfolded Protein Response/physiology , Animals , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Cell Survival/genetics , Endoribonucleases/genetics , Glucosidases/genetics , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction/genetics
14.
Biochem Biophys Res Commun ; 514(4): 1058-1065, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31097221

ABSTRACT

Resolvins (Rvs) are endogenous lipid mediators that promote resolution of inflammation and return to homeostasis. We previously reported that RvD1 both facilitates M2 macrophage polarization of Kupffer cells (KCs) and efferocytosis and modulates thioredoxin 2-mediated mitochondrial quality control in liver ischemia/reperfusion (IR) injury. However, the specific cellular or molecular targets of RvD1 remain poorly understood. Sphingosine-1-phosphate (S1P), the natural sphingolipid ligand for a family of G protein-coupled receptors (S1P1-S1P5), regulates lymphocyte circulation and various immune responses. Here we investigated the role of RvD1 in IR-induced hepatocellular damage with a focus on S1P signaling. Male C57BL/6 mice were subjected to partial hepatic ischemia for 60 min, followed by reperfusion. Mice were pretreated with RvD1 (15 µg/kg, i.p.) 1 h prior to ischemia and immediately before reperfusion. To deplete KCs, liposome clodronate was administered (100 µL/mice, i.v.) 24 h prior to ischemia. Mice were pretreated with VPC23019 (100 µg/kg, i.p.), an antagonist for S1P1/S1P3 10 min prior to initial RvD1 treatment. Exogenous RvD1 attenuated IR-induced hepatocellular damage as evidenced by serum HMGB1 release. RvD1 attenuated the decrease in hepatic S1P concentration induced by IR. KC depletion by liposome clodronate did not alter the effect of RvD1 on sphingosine kinases (SKs) and S1P receptors, suggesting independency of KCs. Moreover, in purified hepatocytes of mice exposed to IR, mRNA expression of SK1, SK2, S1P1, and S1P3 decreased significantly, and this was attenuated by RvD1. Finally, VPC23019 pretreatment abolished the hepatoprotective effects of RvD1 in serum HMGB1 release. Our findings suggest that RvD1 protects the liver against IR injury by activating S1P signaling.


Subject(s)
Docosahexaenoic Acids/pharmacology , Liver/drug effects , Lysophospholipids/metabolism , Reperfusion Injury/drug therapy , Sphingosine/analogs & derivatives , Animals , Infrared Rays , Liver/metabolism , Liver/pathology , Lysophospholipids/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Phosphoserine/analogs & derivatives , Phosphoserine/pharmacology , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction/drug effects , Sphingosine/antagonists & inhibitors , Sphingosine/metabolism
15.
Cells ; 8(4)2019 03 30.
Article in English | MEDLINE | ID: mdl-30935019

ABSTRACT

Autophagy is a cellular process that disrupts and uses unnecessary or malfunctioning components for cellular homeostasis. Evidence has shown a role for autophagy in tumor cell survival, but the molecular determinants that define sensitivity against autophagic regulation in cancers are not clear. Importantly, we found that breast cancer cells with low expression levels of a zinc-finger protein, ZNF143 (MCF7 sh-ZNF143), showed better survival than control cells (MCF7 sh-Control) under starvation, which was compromised with chloroquine, an autophagy inhibitor. In addition, there were more autophagic vesicles in MCF7 sh-ZNF143 cells than in MCF7 sh-Control cells, and proteins related with the autophagic process, such as Beclin1, p62, and ATGs, were altered in cells with less ZNF143. ZNF143 knockdown affected the stability of p53, which showed a dependence on MG132, a proteasome inhibitor. Data from proteome profiling in breast cancer cells with less ZNF143 suggest a role of NAD(P)H quinone dehydrogenase 1(NQO1) for p53 stability. Taken together, we showed that a subset of breast cancer cells with low expression of ZNF143 might exhibit better survival via an autophagic process by regulating the p53⁻Beclin1 axis, corroborating the necessity of blocking autophagy for the best therapy.


Subject(s)
Beclin-1/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , NAD(P)H Dehydrogenase (Quinone)/metabolism , Signal Transduction , Stress, Physiological , Trans-Activators/metabolism , Tumor Suppressor Protein p53/metabolism , Apoptosis , Autophagy , Breast Neoplasms/ultrastructure , Cell Line, Tumor , Cell Survival , Disease-Free Survival , Female , Humans , Protein Stability , Vacuoles/metabolism , Vacuoles/ultrastructure
16.
Microsc Res Tech ; 82(1): 18-24, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29774634

ABSTRACT

There is a global trend of increase in the demand for three-dimensional electron microscopy with high resolution. The ultrastructural change and related functional studies are necessary to investigate biological phenomena. In this study, currently available 3D reconstruction techniques of electron microscopes (serial block-face scanning electron microscopy and focused ion beam-scanning electron microscopy) were used to investigate hyperpigmentary disorders in human skin. In the basal layer of the epidermis in the human skin, there are melanocytes that produce melanin and keratinocytes that act as a barrier against environmental damage. The 3D structure from serial images through scanning electron microscopy showed locations of melanosomes between melanocyte and keratinocyte in the hyperpigmentary disorder, in addition, the electron tomography showed pigment transfer through melanin instead melanosome. These results support the exocytosis-endocytosis theory of pigment in human skin.


Subject(s)
Endocytosis/physiology , Hyperpigmentation/pathology , Melanins/metabolism , Pigmentation/physiology , Skin/metabolism , Aged , Female , Humans , Imaging, Three-Dimensional , Keratinocytes/pathology , Male , Melanocytes/pathology , Melanosomes/pathology , Microscopy, Electron, Scanning , Middle Aged , Skin/ultrastructure
17.
Appl Microsc ; 49(1): 11, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-33580401

ABSTRACT

Autophagy, a highly conserved process of eukaryotic cellular recycling, plays an important role in cell survival and maintenance. Dysfunctional autophagy contributes to the pathologies of many human diseases. Many studies have attempted to clarify the process of autophagy. Here, we review morphological studies of autophagy involving electron microscopy.

18.
Aquat Toxicol ; 205: 130-139, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30384194

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) are increasingly used in various products as coating and additive materials for household goods, personal-care products, and drug delivery systems. Because of their broad applications, the potential risks to nontarget organisms associated with their input into aquatic environments have generated much concern. We investigated the acute toxicity, morphological responses, and potential impact on physiology and metabolism in polyps exposed to spherical ZnO NPs of either 20 nm (ZnO NP20) or 100 nm (ZnO NP100). The median lethal concentrations (LC50) of ZnO NP20 were 55.3, 8.7, and 7.0 µg/mL after exposure for 48, 72, and 96 h, respectively; and those of ZnO NP100 were 262.0, 14.9, and 9.9 µg/mL, respectively. The morphological responses of the hydra polyps to a range of ZnO NP concentrations suggest that ZnO NPs may negatively affect neurotransmission in Hydra. ZnO NPs may also induce abnormal regeneration in the polyps by affecting the expression of several genes related to the Wnt signaling pathway. The presence of ZnO NP20 in the hydra tissue was confirmed with electron microscopy. A Gene Ontology analysis of the genes differentially expressed in hydra polyps after exposure to ZnO NP20 for 12 or 24 h revealed changes in various processes, including cellular and metabolic process, stress response, developmental process, and signaling. A KEGG pathway analysis of hydra polyps after exposure of ZnO NP20 or ZnO NP100 for 12 or 24 h demonstrated various changes, including in the DNA replication and repair, endocytosis, lysosomes, Wnt signaling, and natural killer-cell-mediated cytotoxicity pathways, suggesting the mechanisms that maintain cellular homeostasis in response to ZnO NPs. Progesterone-mediated oocyte maturation was also affected by the ZnO NPs nanoparticles, suggesting that they are potential endocrine disruptors. This study should increase our concern regarding the dispersal of ZnO NPs in aquatic environments.


Subject(s)
Hydra/drug effects , Metal Nanoparticles/toxicity , Zinc Oxide/toxicity , Animals , DNA/drug effects , Signal Transduction/drug effects , Water Pollutants, Chemical/toxicity
19.
Br J Pharmacol ; 175(12): 2441-2453, 2018 06.
Article in English | MEDLINE | ID: mdl-29569721

ABSTRACT

BACKGROUND AND PURPOSE: Liver ischaemia and reperfusion (IR) injury is a sterile inflammatory response involving production of ROS. Mitochondrial homeostasis is maintained by mitochondrial quality control (QC). Thioredoxin (TRX) 2 is a key mitochondrial redox-sensitive protein. Resolvin D1 (RvD1), a specialized pro-resolving lipid mediator, exerts anti-inflammatory and antioxidant activities. We investigated mechanisms of RvD1 protection against IR-induced oxidative damage to the liver, focusing on TRX2-mediated mitochondrial QC. EXPERIMENTAL APPROACH: Mice underwent partial warm IR. RvD1 was administered 1 h before ischaemia and immediately prior to reperfusion. Human liver carcinoma HepG2 cells were exposed to hypoxia/reoxygenation and transfected with TRX2 siRNA. Immunohistochemistry, Western blotting and enzyme assays were used to follow changes in mitochondrial structure and function. KEY RESULTS: RvD1 attenuated hepatocellular damage following IR, assessed by serum aminotransferase activities and histology. RvD1 reduced mitochondrial swelling, lipid peroxidation and glutamate dehydrogenase release. Impaired activities of mitochondrial complexes I and III were restored by RvD1. RvD1 enhanced expression of the mitophagy-related protein, Parkin and inhibited accumulation of PTEN-induced putative kinase 1. RvD1 restored levels of mitochondrial biogenesis proteins including PPARγ coactivator 1α, nuclear respiratory factor 1 and mitochondrial transcription factor A and mtDNA level. RvD1 attenuated the increase in levels of the mitochondrial fission-related protein, dynamin-related protein 1. IR reduced TRX2 levels while increasing TRX2 association with TRX-interacting protein. RvD1 attenuated these changes. The regulatory effects of RvD1 on mitochondrial QC were abolished by TRX2 knockdown. CONCLUSIONS AND IMPLICATIONS: We suggest that RvD1 ameliorated IR-induced hepatocellular damage by regulating TRX2-mediated mitochondrial QC.


Subject(s)
Docosahexaenoic Acids/pharmacology , Liver Diseases/drug therapy , Mitochondria, Liver/drug effects , Reperfusion Injury/drug therapy , Thioredoxins/antagonists & inhibitors , Animals , Docosahexaenoic Acids/administration & dosage , Hep G2 Cells , Humans , Lipid Peroxidation/drug effects , Liver Diseases/metabolism , Liver Diseases/pathology , Male , Mice , Mice, Inbred C57BL , Mitochondria, Liver/metabolism , Quality Control , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Thioredoxins/metabolism
20.
Shock ; 50(2): 209-218, 2018 08.
Article in English | MEDLINE | ID: mdl-29028772

ABSTRACT

Mitochondrial dysfunction is involved in the pathogenesis of sepsis-induced multiple organ dysfunction syndrome (MODS). Mitochondrial quality control (QC) is characterized by self-recovering mitochondrial damage through mitochondrial biogenesis, mitophagy, and fission/fusion. Heme oxygenase (HO)-1 acts as a signaling molecule to modulate inflammation. The present study elucidated the cytoprotective mechanisms of HO-1 in sepsis, particularly focusing on toll-like receptor (TLR)4-mediated mitochondrial QC. Mice were subjected to sepsis by cecal ligation and puncture (CLP). The mice were injected intraperitoneally with hemin (10 mg/kg) at 12 h before CLP or zinc protoporphyrin IX (ZnPP; 30 mg/kg) at 2 h before CLP. The serum and tissues were collected 6 h after CLP. Mortality, MODS, and proinflammatory cytokines increased in septic mice. These increases were augmented by ZnPP but attenuated by hemin. Hemin decreased mitochondrial lipid peroxidation and mitochondrial dysfunction. Hemin enhanced mitochondrial biogenesis, as indicated by increased levels of peroxisome proliferator-activated receptor-γ coactivator 1α, nuclear respiratory factor 1, and mitochondrial transcription factor A (TFAM). Hemin also enhanced mitophagy, as indicated by decreased PTEN-induced putative kinase 1 (PINK1) level and increased Parkin level. Hemin decreased fission-related protein, dynamin-related protein 1 (DRP1), and increased fusion-related protein, mitofusin 2. Hemin attenuated the increased TLR4 expression. TAK-242, a TLR4 antagonist, attenuated mortality, inflammatory response, and impaired mitochondrial QC. Our findings suggest that HO-1 attenuates septic injury by modulating TLR4-mediated mitochondrial QC.


Subject(s)
Heme Oxygenase-1/metabolism , Liver , Membrane Proteins/metabolism , Mitochondria, Liver , Sepsis , Toll-Like Receptor 4/metabolism , Animals , Liver/injuries , Liver/metabolism , Liver/pathology , Male , Mice , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Sepsis/metabolism , Sepsis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...