Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798440

ABSTRACT

Understanding the distribution of hundreds of thousands of plant metabolites across the plant kingdom presents a challenge. To address this, we curated publicly available LC-MS/MS data from 19,075 plant extracts and developed the plantMASST reference database encompassing 246 botanical families, 1,469 genera, and 2,793 species. This taxonomically focused database facilitates the exploration of plant-derived molecules using tandem mass spectrometry (MS/MS) spectra. This tool will aid in drug discovery, biosynthesis, (chemo)taxonomy, and the evolutionary ecology of herbivore interactions.

2.
ACS Pharmacol Transl Sci ; 7(4): 1023-1031, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633588

ABSTRACT

The unique structure and beneficial biological properties of marine natural products have drawn interest in drug development. Here, we examined the therapeutic potential of napyradiomycin B4 isolated from marine-derived Streptomyces species for osteoclast-related skeletal diseases. Bone marrow-derived macrophages were treated with napyradiomycin B4 in an osteoclast-inducing medium, and osteoclast formation, osteoclast-specific gene expression, and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) localization were evaluated using tartrate-resistant acid phosphatase staining, real-time PCR, and immunostaining, respectively. Phosphorylation levels of signaling proteins were assessed by immunoblot analysis to understand the molecular action of napyradiomycin B4. The in vivo efficacy of napyradiomycin B4 was examined under experimental periodontitis, and alveolar bone destruction was evaluated by microcomputed tomography (micro-CT) and histological analyses. Among the eight napyradiomycin derivatives screened, napyradiomycin B4 considerably inhibited osteoclastogenesis. Napyradiomycin B4 significantly suppressed the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation and disrupted the expression of NFATc1 and its target genes. Mitogen-activated extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase (ERK) phosphorylation levels were reduced by napyradiomycin B4 in response to RANKL. Under in vivo experimental periodontitis, napyradiomycin B4 significantly attenuated osteoclast formation and decreased the distance between the cementoenamel junction and alveolar bone crest. Our findings demonstrate the antiosteoclastogenic activity of napyradiomycin B4 by inhibiting the RANKL-induced MEK-ERK signaling pathway and its protective effect on alveolar bone destruction.

3.
J Nat Prod ; 87(4): 1230-1234, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38626456

ABSTRACT

Three new cyclic heptapeptides, talaromides A-C (1-3), were isolated from cultures produced by the fungus Talaromyces siglerae (Ascomycota), isolated from an unidentified sponge. The structures, featuring an unusual proline-anthranilic moiety, were elucidated by analysis of spectroscopic data and chemical transformations, including the advanced Marfey's method and GITC derivatization. Talaromides A and B inhibited migration activity against PANC-1 human pancreatic cancer cells without significant cytotoxicity.


Subject(s)
Peptides, Cyclic , Porifera , Talaromyces , Talaromyces/chemistry , Animals , Porifera/microbiology , Humans , Molecular Structure , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Drug Screening Assays, Antitumor , Marine Biology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification
4.
Sensors (Basel) ; 24(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339681

ABSTRACT

Gait event detection is essential for controlling an orthosis and assessing the patient's gait. In this study, patients wearing an electromechanical (EM) knee-ankle-foot orthosis (KAFO) with a single IMU embedded in the thigh were subjected to gait event detection. The algorithm detected four essential gait events (initial contact (IC), toe off (TO), opposite initial contact (OIC), and opposite toe off (OTO)) and determined important temporal gait parameters such as stance/swing time, symmetry, and single/double limb support. These gait events were evaluated through gait experiments using four force plates on healthy adults and a hemiplegic patient who wore a one-way clutch KAFO and a pneumatic cylinder KAFO. Results showed that the smallest error in gait event detection was found at IC, and the largest error rate was observed at opposite toe off (OTO) with an error rate of -2.8 ± 1.5% in the patient group. Errors in OTO detection resulted in the largest error in determining the single limb support of the patient with an error of 5.0 ± 1.5%. The present study would be beneficial for the real-time continuous monitoring of gait events and temporal gait parameters for persons with an EM KAFO.


Subject(s)
Ankle , Foot Orthoses , Adult , Humans , Gait , Orthotic Devices , Ankle Joint , Thigh , Biomechanical Phenomena , Walking
5.
Heliyon ; 9(9): e20179, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809399

ABSTRACT

Lung cancer, which has a high incidence and mortality rates, often metastasizes and exhibits resistance to radiation therapy. Seongsanamide B has conformational features that suggest it has therapeutic potential; however, its antitumor activity has not yet been reported. We evaluated the possibility of seongsanamide B as a radiation therapy efficiency enhancer to suppress γ-irradiation-induced metastasis in non-small cell lung cancer. Seongsanamide B suppressed non-small cell lung cancer cell migration and invasion caused by γ-irradiation. Furthermore, it suppressed γ-irradiation-induced upregulation of Bcl-XL and its downstream signaling molecules, such as superoxide dismutase 2 (SOD2) and phosphorylated Src, by blocking the nuclear translocation of phosphorylated STAT3. Additionally, seongsanamide B markedly modulated the γ-irradiation-induced upregulation of E-cadherin and vimentin. Consistent with the results obtained in vitro, while seongsanamide B did not affect xenograft tumor growth, it significantly suppressed γ-irradiation-induced metastasis by inhibiting Bcl-XL/SOD2/phosphorylated-Src expression and modulating E-cadherin and vimentin expression in a mouse model. Thus, seongsanamide B may demonstrate potential applicability as a radiation therapy efficiency enhancer for lung cancer treatment.

6.
Mol Med Rep ; 28(5)2023 11.
Article in English | MEDLINE | ID: mdl-37732549

ABSTRACT

Wear particle­induced osteolysis is a serious complication that occurs in individuals with titanium (Ti)­based implants following long­term usage due to loosening of the implants. The control of excessive osteoclast differentiation and inflammation is essential for protecting against wear particle­induced osteolysis. The present study evaluated the effect of britanin, a pseudoguaianolide sesquiterpene isolated from Inula japonica, on osteoclastogenesis in vitro and Ti particle­induced osteolysis in vivo. The effect of britanin was examined in the osteoclastogenesis of mouse bone marrow­derived macrophages (BMMs) using TRAP staining, RT­PCR, western blotting and immunocytochemistry. The protective effect of britanin was examined in a mouse calvarial osteolysis model and evaluated using micro­CT and histomorphometry. Britanin inhibited osteoclast differentiation and F­actin ring formation in the presence of macrophage colony­stimulating factor and receptor activator of nuclear factor kB ligand in BMMs. The expression of osteoclast­specific marker genes, including tartrate­resistant acid phosphatase, cathepsin K, dendritic cell­specific transmembrane protein, matrix metallopeptidase 9 and nuclear factor of activated T­cells cytoplasmic 1, in the BMMs was significantly reduced by britanin. In addition, britanin reduced the expression of B lymphocyte­induced maturation protein­1, which is a transcriptional repressor of negative osteoclastogenesis regulators, including interferon regulatory factor­8 and B­cell lymphoma 6. Conversely, britanin increased the expression levels of anti­oxidative stress genes, namely nuclear factor erythroid­2­related factor 2, NAD(P)H quinone oxidoreductase 1 and heme oxygenase 1 in the BMMs. Furthermore, the administration of britanin significantly reduced osteolysis in a Ti particle­induced calvarial osteolysis mouse model. Based on these findings, it is suggested that britanin may be a potential therapeutic agent for wear particle­induced osteolysis and osteoclast­associated disease.


Subject(s)
Osteogenesis , Osteolysis , Humans , Animals , Mice , Osteolysis/drug therapy , Osteolysis/etiology , Titanium/adverse effects , Osteoclasts , Actin Cytoskeleton , Disease Models, Animal
7.
J Med Food ; 26(6): 379-389, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37319312

ABSTRACT

The aim of this study is to investigate the efficacy and the underlying mechanism of Veronica incana in osteoarthritis (OA) induced by intraarticular injection of monosodium iodoacetate (MIA). The selected major four compounds (A-D) of V. incana were found from fractions 3 and 4. Its structure elucidation was determined by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) data analysis and nuclear magnetic resonance (NMR) data comparison with literature. MIA (50 µL with 80 mg/mL) for the animal experiment was injected into the right knee joint. The V. incana was administered orally every day to rats for 14 days from 7 days after MIA treatment. Finally, we confirmed the four compounds: (A) verproside; (B) catalposide; (C) 6-vanilloylcatapol; and (D) 6-isovanilloylcatapol. When we evaluated the effect of V. incana on the MIA injection-induced knee OA model, there were a noticeable initial decreased in hind paw weight-bearing distribution compared to the Normal group (P < .001), but V. incana supplementation resulted in a significant increase in the weight-bearing distribution to the treated knee (P < .001). Moreover, the V. incana treatment led to a decrease in the levels of liver function enzymes and tissue malondialdehyde (P < .05 and .01). The V. incana significantly suppressed the inflammatory factors through the nuclear factor-kappa B signaling pathway and downregulated the expression of matrix metalloproteinases, which are involved in the degradation of the extracellular matrix (P < .01 and .001). In addition, we confirmed the alleviation of cartilage degeneration through tissue stains. In conclusion, this study confirmed the major four compounds of V. incana and suggested that V. incana could serve as an anti-inflammatory candidate agent for patients with OA.


Subject(s)
Osteoarthritis, Knee , Veronica , Rats , Animals , Iodoacetic Acid , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Osteoarthritis, Knee/chemically induced , Osteoarthritis, Knee/drug therapy
8.
Phytochemistry ; 211: 113711, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37150434

ABSTRACT

During the screening of the cytotoxicity of rare Korean endemic plants, the extract of Thuja koraiensis Nakai displayed potent cytotoxicity against the adenocarcinomic human alveolar basal epithelial A549 cell line. Through a series of separations via column chromatography, three undescribed abietanes, an undescribed labdane along with a labdane, and a biflavonoid were purified from methylene chloride (CH2Cl2) fraction possessing a potent cytotoxic effect. Extensive 1D and 2D NMR spectroscopic data analyses, in combination with quantum chemical calculations were conducted to establish the planar and absolute configurations of thujakoraienes A-C. The chemical structure of thujakoraiene D was elucidated by spectroscopic data analysis and competing enantioselective acylation. Thujakoraienes A and C along with 7,7″-di-O-methylamentoflavone, showed cytotoxic effects on A549 cells, with IC50 values of 64.86, 47.97, and 16.14 µM, respectively. Finally, thujakoraiene C and 7,7″-di-O-methylamentoflavone were identified as potent cytotoxic compounds in A549 cells, followed by an additional cytotoxicity test in the normal human lung fibroblast MRC-5 cell line. This is the first study on the non-volatile chemicals in the extract of T. koraiensis and comparison of chemical profiles of T. orientalis and T. koraiensis.


Subject(s)
Antineoplastic Agents , Diterpenes , Thuja , Humans , A549 Cells , Thuja/chemistry , Molecular Structure , Antineoplastic Agents/pharmacology , Diterpenes/chemistry , Plant Extracts/pharmacology , Cell Line, Tumor
9.
ACS Appl Mater Interfaces ; 15(22): 26373-26384, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37219569

ABSTRACT

Potentiation of stem cell potency is critical for successful tissue engineering, especially for bone regeneration. Three-dimensional cell culture and bioactive molecule co-delivery with cells have been proposed to achieve this effect. Here, we provide a uniform and scalable fabrication of osteogenic microtissue constructs of mesenchymal stem cell (MSC) spheroids surface-engineered with dexamethasone-releasing polydopamine-coated microparticles (PD-DEXA/MPs) to target bone regeneration. The microparticle conjugation process was rapid and cell-friendly and did not affect the cell viability or key functionalities. The incorporation of DEXA in the conjugated system significantly enhanced the osteogenic differentiation of MSC spheroids, as evidenced by upregulating osteogenic gene expression and intense alkaline phosphatase and alizarin red S staining. In addition, the migration of MSCs from spheroids was tested on a biocompatible macroporous fibrin scaffold (MFS). The result showed that PD-DEXA/MPs were stably anchored on MSCs during cell migration over time. Finally, the implantation of PD-DEXA/MP-conjugated spheroid-loaded MFS into a calvarial defect in a mouse model showed substantial bone regeneration. In conclusion, the uniform fabrication of microtissue constructs containing MSC spheroids with drug depots shows a potential to improve the performance of MSCs in tissue engineering.


Subject(s)
Mesenchymal Stem Cells , Spheroids, Cellular , Mice , Animals , Osteogenesis , Bone Regeneration , Cell Differentiation , Tissue Engineering/methods , Dexamethasone/pharmacology , Dexamethasone/metabolism
10.
Article in English | MEDLINE | ID: mdl-36231489

ABSTRACT

(1) Background: The amount of physical activity most adults perform is less than the recommended amount, and the resulting decrease in physical strength makes them vulnerable to various diseases. A decrease in muscle size and strength due to damage caused by disease or aging negatively affects functional strength. Muscle evaluation in adults can yield results that are predictive indicators of aging and unexpected disability. In addition, balance ability is essential to prevent falls and injuries in daily life and maintain functional activities. It is important to develop and strengthen balance in the lower extremities and core muscles to maintain and enhance overall body balance. This study aimed to analyze the effects of core balance training on muscle tone and balance ability in adults. (2) Methods: The participants of this study were 32 adult male and female university students (male: mean age = 21.3 ± 1.9 years, weight = 74.2 ± 12.6 kg, BMI = 23.4 + 2.5, n = 14; female: mean age = 21.0 ± 1.4 years, weight = 64.6 + 1.2 kg, BMI = 22.4 ± 2.4, n =18). Thirty-two adults (training group: 16, control group: 16; male: 16, female: 16) participated in the Myoton PRO (gastrocnemius lateral/medial, tibialis anterior), Pedalo balance system, and Y-balance test. (3) Results: The following results were obtained for muscle elasticity, stiffness, and dynamic/static balance ability after 10 weeks of core balance training. 1. There was no significant difference in muscle elasticity (gastrocnemius lateral/medial, tibialis anterior) (p < 0.05). 2. Muscle stiffness (gastrocnemius lateral/medial, tibialis anterior) significantly increased (p < 0.05). 3. Dynamic/static balance ability significantly increased (p < 0.05). (4) Conclusions: In future, data for the age and sex of various participants, should be accumulated by recruiting participants to study muscle characteristics, such as muscle elasticity and stiffness. Estimating the appropriate injury range and optimal exercise capacity is possible through follow-up studies. The findings can then be used as a basis for predicting injuries or determining and confirming the best time to resume exercise.


Subject(s)
Muscle Tonus , Postural Balance , Adult , Core Stability , Exercise , Female , Humans , Male , Muscle Strength/physiology , Muscle, Skeletal/physiology , Postural Balance/physiology , Young Adult
11.
J Nat Prod ; 85(10): 2445-2453, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36197044

ABSTRACT

A new secondary metabolite, ulleungdolin (1), was isolated from the co-culture of an actinomycete, Streptomyces sp. 13F051, and a fungus, Leohumicola minima 15S071. Based on the NMR, UV, and MS data, it was deduced that the planar structure of 1 comprised an isoindolinone (IsoID) with an octanoic acid, a tripeptide, and a sugar. The tripeptide has the unprecedented amino acids norcoronamic acid, 3-hydroxy-glutamine, and 4-hydroxy-phenylglycine and is linked by a C-N bond with IsoID. The absolute configurations were determined by chemical derivatization, extensive spectroscopic methods, and electronic circular dichroism calculations and supported by bioinformatic analyses. Bioactivity evaluation studies indicated that 1 had an antimigration effect on MDA-MB-231 breast cancer cells.


Subject(s)
Ascomycota , Polyketides , Streptomyces , Streptomyces/chemistry , Polyketides/pharmacology , Polyketides/chemistry , Coculture Techniques , Molecular Structure , Peptides
12.
J Agric Food Chem ; 70(40): 13002-13014, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36167496

ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are indispensable analytical tools to provide chemical fingerprints in metabolomics studies. The present study evaluated radiation breeding wheat lines for chemical changes by non-targeted NMR-based metabolomics analysis of bran extracts. Multivariate analysis following spectral binning suggested pyrrole-2-carbaldehydes as chemical markers of four mutant lines with distinct NMR fingerprints in a δH range of 9.28-9.40 ppm. Further NMR and MS data analysis, along with chromatographic fractionation and synthetic preparation, aimed at structure identification of marker metabolites and identified five pyrrole-2-carbaldehydes. Quantum-mechanical driven 1H iterative full spin analysis (QM-HiFSA) on synthetic pyrrole-2-carbaldehydes provided a precise description of complex peak patterns. Biological evaluation of pyrrole-2-carbaldehydes was performed with nine synthetic products, and six compounds showed hepatoprotective effects via modulation of reactive oxygen species production. Given that three out of five identified in wheat bran of radiation were described for hepatoprotective activity, the value of radiation mutation to greatly enhance pyrrole-2-carbaldehyde production was supported.


Subject(s)
Dietary Fiber , Metabolomics , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry , Metabolomics/methods , Pyrroles , Reactive Oxygen Species
13.
Phytochemistry ; 203: 113375, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35973611

ABSTRACT

Nardostachys jatamansi is close to Valerian in consideration of their same psychoactive effects, such as sedation and neuroprotection. Valeriana-type iridoids are major active components of Valerian, but few valeriana-type iridoids have been isolated from N. jatamansi. Iridoid-targeting chemical investigation of the rhizomes of N. jatamansi resulted in the isolation of seven valeriana-type iridoid glycosides, four of which are previously undescribed. Their structures were determined through NMR spectroscopy, high-resolution mass spectrometry, and optical rotation experiments. In addition, the inaccurate configurations of patrinalloside and 6″-acetylpatrinalloside from previous reports were corrected. These compounds, unstable due to alcoholic solvents, were more stable in the mixtures than in purified forms, as monitored by the qNMR method, supporting the use of natural products as mixtures. Furthermore, the isolates, as well as crude and solvent partition extracts, were found to have a protective effect against hydrogen-peroxide-induced toxicity in human neuroblastoma cells, as confirmed by assays for cell viability and antioxidation. These findings suggest the potential therapeutic application of the valeriana-type iridoid glycosides isolated herein with improved biochemical stability.


Subject(s)
Biological Products , Nardostachys , Neuroblastoma , Valerian , Humans , Hydrogen/analysis , Hydrogen Peroxide/analysis , Iridoid Glycosides/pharmacology , Iridoids/chemistry , Oxidative Stress , Plant Extracts/chemistry , Plant Roots/chemistry , Rhizome , Solvents , Valerian/chemistry
14.
Front Nutr ; 9: 950505, 2022.
Article in English | MEDLINE | ID: mdl-35811944

ABSTRACT

[This corrects the article DOI: 10.3389/fnut.2021.806744.].

15.
Mol Neurobiol ; 59(9): 5874-5890, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35804280

ABSTRACT

Boswellia serrata gum is a natural product that showed beneficial effects on neurodegenerative diseases in recent studies. In this study, we investigated the effects of Boswellia serrata resin on rotenone-induced dopaminergic neurotoxicity. Firstly, we attempted to see if the resin can induce AMP-activated protein kinase (AMPK) signaling pathway which has been known to have broad neuroprotective effects. Boswellia increased AMPK phosphorylation and reduced phosphorylation of mammalian target of rapamycin (p-mTOR) and α-synuclein (p-α-synuclein) in the striatum while increased the expression level of Beclin1, a marker for autophagy and brain-derived neurotrophic factor. Next, we examined the neuroprotective effects of the Boswellia extract in the rotenone-injected mice. The results showed that Boswellia evidently attenuated the loss of the nigrostriatal dopaminergic neurons and microglial activation caused by rotenone. Moreover, Boswellia ameliorated rotenone-induced decrease in the striatal dopamine and impairment in motor function. Accumulation of α-synuclein meditated by rotenone was significantly ameliorated by Boswellia. Also, we showed that ß-boswellic acid, the active constituents of Boswellia serrata gum, induced AMPK phosphorylation and attenuated α-synuclein phosphorylation in SHSY5 cells. These results suggest that Boswellia protected the dopaminergic neurons from rotenone neurotoxicity via activation of the AMPK pathway which might be associated with attenuation of α-synuclein aggregation and neuroinflammation. Further investigations are warranted to identify specific molecules in Boswellia which are responsible for the neuroprotection.


Subject(s)
Boswellia , Neuroprotective Agents , Neurotoxicity Syndromes , AMP-Activated Protein Kinases/metabolism , Animals , Boswellia/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Mammals/metabolism , Methanol/metabolism , Methanol/pharmacology , Mice , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neurotoxicity Syndromes/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Rotenone/pharmacology , alpha-Synuclein/metabolism
16.
Sci Rep ; 12(1): 10285, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35717509

ABSTRACT

We report a method for the simultaneous determination of the sequence and absolute configuration of peptide amino acids using a combination of Edman degradation and HPLC-MS/CD. Phenylthiohydantoin (PTH) derivatives of 20 pairs of standard D- and L-amino acids were synthesized by the Edman reaction. The CD spectra of the derivatives revealed that each pair of the PTH derivatives exhibited the absorption with opposite signs at around 270 nm. These standard PTH derivatives showed well-resolved resolution without interference from byproducts in the ion chromatogram and clear positive/negative CD absorptions when subjected on a reversed phase HPLC-MS system coupled with a CD-2095 HPLC detector. This method was applied for the detection of a synthetic pentapeptide and a natural depsipeptide (halicylindramide C). The sequence and configuration of the pentapeptide and up to eight residues of halicylindramide C were successfully analyzed by this method. The amino acid configuration of the pentapeptide was also determined successfully by subjecting its acid hydrolysates to the Edman reaction followed by HPLC-MS/CD.


Subject(s)
Amino Acids , Phenylthiohydantoin , Amines , Amino Acids/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Peptides/chemistry , Phenylthiohydantoin/chemistry
17.
J Nat Prod ; 85(3): 459-461, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35330994
18.
Plants (Basel) ; 11(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35214881

ABSTRACT

Pueraria lobata (Willd.) Ohwi. is a widely used medicinal plant in Korea, China, and Japan. The flower of P. lobata (Puerariae Flos) contains various bioactive substances such as triterpenoidal saponins and isoflavonoids. In this study, we developed a quantitative analysis of the isoflavones of Puerariae Flos by quantitative proton nuclear magnetic resonance (qHNMR) spectroscopy using the internal calibrant (IC). From the qHNMR results, the isoflavone content was found to be 7.99% and 10.57% for the MeOH sonication extract (PLs) and the MeOH reflux extract (PLr) of Puerariae Flos, respectively. The quantified isoflavone content was validated using the conventional analytical method, high-performance liquid chromatography with ultraviolet detection (HPLC-UV). The present study shows that validated qHNMR spectroscopy is a reliable method for quantifying and standardizing the isoflavone content in Puerariae Flos.

19.
ACS Omega ; 7(2): 1722-1732, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35071867

ABSTRACT

A cyclic depsipeptide, nobilamide I (1), along with the known peptide A-3302-B/TL-119 (2), was isolated from the saline cultivation of the marine-derived bacterium Saccharomonospora sp., strain CNQ-490. The planar structure of 1 was elucidated by interpretation of 1D and 2D NMR and MS spectroscopic data. The absolute configurations of the amino acids in 1 were assigned by using the C3 Marfey's analysis and comparing them with those of 2 based on their biosynthetic pathways. Nobilamide I (1) decreased cell motility by inhibiting epithelial-mesenchymal transition markers in A549 (lung cancer), AGS (gastric cancer), and Caco2 (colorectal cancer) cell lines. In addition, 1 modulated the expression of the matrix metalloproteinase (MMP) family (MMP2 and MMP9) in the three cell lines.

20.
J Org Chem ; 87(2): 1043-1055, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34967649

ABSTRACT

Luquilloamides A-G (1-7) were isolated from a small environmental collection of a marine cyanobacterium found growing on eelgrass (Zostera sp.) near Luquillo, Puerto Rico. Structure elucidation of the luquilloamides was accomplished via detailed NMR and MS analyses, and absolute configurations were determined using a combination of advanced Mosher's method, J-based configuration analysis, semisynthetic fragment analysis derived from ozonolysis, methylation, Baeyer-Villiger oxidation, Mosher's esterification, specific rotations, and ECD data. Except for 2, the luquilloamides share a characteristic tert-butyl-containing polyketide fragment, ß-alanine, and a proposed highly modified polyketide extension. While compound 1 is a linear lipopeptide with two α-methyl branches and a vinyl chloride functionality in the polyketide portion, compounds 4, 6, and 7 possess a cyclohexanone structure with methylation on the α- or ß-positions of the polyketide as well as an acetyl group. Interestingly, the absolute configuration at C-5 and C-6 on the cyclohexanone unit in 7 is opposite to that of 4-6. Compound 3 was revealed to have a tert-butyl-containing polyketide, ß-alanine, and a PKS/NRPS-derived γ-isopropyl pyrrolinone. Compound 2 may be a hydrolysis product of 3. Of the seven new compounds, 1 showed the most potent cytotoxicity to human H-460 lung cancer cells.


Subject(s)
Lipopeptides/pharmacology , Oscillatoria , Cell Line, Tumor , Humans , Marine Biology , Molecular Structure , Oscillatoria/chemistry , Puerto Rico
SELECTION OF CITATIONS
SEARCH DETAIL
...