Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Brain Stimul ; 17(5): 1060-1075, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218349

ABSTRACT

BACKGROUND: Non-invasive deep brain modulation (DBM) stands as a promising therapeutic avenue to treat brain diseases. Acoustic DBM represents an innovative and targeted approach to modulate the deep brain, employing techniques such as focused ultrasound and shock waves. Despite its potential, the optimal mechanistic parameters, the effect in the brain and behavioral outcomes of acoustic DBM remains poorly understood. OBJECTIVE: To establish a robust protocol for the shock wave DBM by optimizing its mechanistic profile of external stimulation, and to assess its efficacy in preclinical settings. METHODS: We used shockwaves due to their capacity to leverage a broader spectrum of peak intensity (10-127 W/mm2) in contrast to ultrasound (0.1-5.0 W/mm2), thereby enabling a more extensive range of neuromodulation effects. We established various types of shockwave pressure profiles of DBM and compared neural and behavioral responses. To ascertain the anticipated cause of the heightened neural activity response, numerical analysis was employed to examine the mechanical dynamics within the brain. RESULTS: An optimized profile led to an enhancement in neuronal activity within the hypothalamus of mouse models. The optimized profile in the hippocampus elicited a marked increase in neurogenesis without neuronal damage. Behavioral analyses uncovered a noteworthy reduction in locomotion without significant effects on spatial memory function. CONCLUSIONS: The present study provides an optimized shock wave stimulation protocol for non-invasive DBM. Our optimized stimulation profile selectively triggers neural functions in the deep brain. Our protocol paves the way for new non-invasive DBM devices to treat brain diseases.

2.
Bioessays ; : e2400016, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221529

ABSTRACT

To orchestrate behaviors for survival, multiple psychological components have evolved. The current theories do not clearly distinguish the distinct components. In this article, we provide a unified theoretical framework. To optimize survival, there should be four components; (1) "need", an alarm based on a predicted deficiency. (2) "motivation", a direct behavior driver. (3) "pleasure", a teacher based on immediate outcomes. (4) "utility", a teacher based on final delayed outcomes. For behavior stability, need should be accumulated into motivation to drive behavior. Based on the immediate outcome of the behavior, the pleasure should teach whether to continue the current behavior. Based on the final delay outcome, the utility should teach whether to increase future behavior by reshaping the other three components. We provide several neural substrate candidates in the food context. The proposed theoretical framework, in combination with appropriate experiments, will unravel the neural components responsible for each theoretical component.

3.
Sci Rep ; 14(1): 16388, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39014004

ABSTRACT

In recent years, human anatomy education has faced challenges with traditional donor dissection, leading to the emergence of virtual dissection as an alternative. This study aims to investigate the academic performance and satisfaction of medical students by comparing the virtual and donor dissections. An open-labeled crossover randomized controlled trial was conducted with 154 first-year medical students in Human Anatomy and Neuroanatomy laboratories, which were divided into three classes. Students were randomly assigned to either the virtual (virtual dissection followed by donor dissection) or donor (donor dissection followed by virtual dissection) groups in each class. A curriculum, incorporating head-mounted displays (HMDs), a life-sized touchscreen, and tablets, was developed. Data was evaluated through quizzes and surveys. In the Human Anatomy laboratory, each class of the donor group conducted heart extraction, dissection and observation. In observation class, the virtual group had a significantly higher mean quiz score than the donor group (p < 0.05). Compared to the donor, satisfaction was significantly higher for the HMD (understanding of concept and immersion), life-size touchscreen (esthetics, understanding of the concept, and spatial ability), and tablet (esthetics, understanding of the concept, spatial ability, and continuous use intention). In the Neuroanatomy laboratory, the virtual group showed significantly higher mean quiz scores than the donor group (p < 0.05), and tablet showed a significantly higher satisfaction than donor in terms of esthetics, understanding of the concept, and spatial ability. These results suggest that virtual dissection has the potential to supplement or replace donor dissection in anatomy education. This study is innovative in that it successfully delivered scenario-based virtual content and validated the efficacy in academic performance and satisfaction when using virtual devices compared to donor.Trial registration: This research has been registered in the Clinical Research Information Service (CRIS, https://cris.nih.go.kr/cris/search/detailSearch.do?search_lang=E&focus=reset_12&search_page=L&pageSize=10&page=undefined&seq=26002&status=5&seq_group=26002 ) with registration number "KCT0009075" and registration date "27/12/2023".


Subject(s)
Dissection , Humans , Female , Male , Dissection/methods , Anatomy/education , Students, Medical/psychology , Young Adult , Personal Satisfaction , Adult , Cross-Over Studies , Curriculum
4.
Science ; 385(6707): 438-446, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38935778

ABSTRACT

Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) are effective antiobesity drugs. However, the precise central mechanisms of GLP-1RAs remain elusive. We administered GLP-1RAs to patients with obesity and observed a heightened sense of preingestive satiation. Analysis of human and mouse brain samples pinpointed GLP-1 receptor (GLP-1R) neurons in the dorsomedial hypothalamus (DMH) as candidates for encoding preingestive satiation. Optogenetic manipulation of DMHGLP-1R neurons caused satiation. Calcium imaging demonstrated that these neurons are actively involved in encoding preingestive satiation. GLP-1RA administration increased the activity of DMHGLP-1R neurons selectively during eating behavior. We further identified that an intricate interplay between DMHGLP-1R neurons and neuropeptide Y/agouti-related peptide neurons of the arcuate nucleus (ARCNPY/AgRP neurons) occurs to regulate food intake. Our findings reveal a hypothalamic mechanism through which GLP-1RAs control preingestive satiation, offering previously unexplored neural targets for obesity and metabolic diseases.


Subject(s)
Arcuate Nucleus of Hypothalamus , Dorsomedial Hypothalamic Nucleus , Glucagon-Like Peptide-1 Receptor Agonists , Obesity , Satiation , Animals , Female , Humans , Male , Mice , Agouti-Related Protein/metabolism , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Dorsomedial Hypothalamic Nucleus/drug effects , Dorsomedial Hypothalamic Nucleus/metabolism , Eating/drug effects , Feeding Behavior/drug effects , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , Mice, Inbred C57BL , Neurons/drug effects , Neurons/physiology , Neuropeptide Y/metabolism , Obesity/drug therapy , Obesity/psychology , Optogenetics , Satiation/drug effects , Glucagon-Like Peptide-1 Receptor Agonists/administration & dosage , Glucagon-Like Peptide-1 Receptor Agonists/pharmacology
5.
Neuron ; 112(13): 2218-2230.e6, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38663401

ABSTRACT

Maladaptive feeding behavior is the primary cause of modern obesity. While the causal influence of the lateral hypothalamic area (LHA) on eating behavior has been established in rodents, there is currently no primate-based evidence available on naturalistic eating behaviors. We investigated the role of LHA GABAergic (LHAGABA) neurons in eating using chemogenetics in three macaques. LHAGABA neuron activation significantly increased naturalistic goal-directed behaviors and food motivation, predominantly for palatable food. Positron emission tomography and magnetic resonance spectroscopy validated chemogenetic activation. Resting-state functional magnetic resonance imaging revealed that the functional connectivity (FC) between the LHA and frontal areas was increased, while the FC between the frontal cortices was decreased after LHAGABA neuron activation. Thus, our study elucidates the role of LHAGABA neurons in eating and obesity therapeutics for primates and humans.


Subject(s)
Feeding Behavior , Goals , Magnetic Resonance Imaging , Animals , Feeding Behavior/physiology , Male , Hypothalamic Area, Lateral/physiology , GABAergic Neurons/physiology , Positron-Emission Tomography , Macaca mulatta , Hypothalamus/physiology , Hypothalamus/diagnostic imaging , Neurons/physiology , Female
6.
Soa Chongsonyon Chongsin Uihak ; 35(2): 150, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38601102

ABSTRACT

[This corrects the article on p. 57 in vol. 35, PMID: 38204745.].

7.
Small ; 20(31): e2308968, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38477693

ABSTRACT

Silver (Ag) metal-based structures are promising building blocks for next-generation photonics and electronics owing to their unique characteristics, such as high reflectivity, surface plasmonic resonance effects, high electrical conductivity, and tunable electron transport mechanisms. However, Ag structures exhibit poor sustainability in terms of device performance because harsh chemicals, particularly S2- ions present in the air, can damage their structures, lowering their optical and electrical properties. Here, the surface chemistry of Ag structures with (3-mercaptopropyl)trimethoxysilane (MPTS) ligands at room temperature and under ambient conditions is engineered to prevent deterioration of their optical and electrical properties owing to S2- exposure. Regardless of the dimensions of the Ag structures, the MPTS ligands can be applied to each dimension (0D, 1D, and 3D). Consequently, highly sustainable plasmonic effects (Δλ < 2 nm), Fabry-Perot cavity resonance structures (Δλ < 2 nm), reflectors (ΔRReflectance < 0.5%), flexible electrodes (ΔRelectrical < 0.1 Ω), and strain gauge sensors (ΔGF < 1), even in S2- exposing conditions is achieved. This strategy is believed to significantly contribute to environmental pollution reduction by decreasing the volume of electronic waste.

8.
Nat Commun ; 15(1): 2102, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453901

ABSTRACT

Nicotinamide adenine dinucleotide (NAD)+ serves as a crucial coenzyme in numerous essential biological reactions, and its cellular availability relies on the activity of the nicotinamide phosphoribosyltransferase (NAMPT)-catalyzed salvage pathway. Here we show that treatment with saturated fatty acids activates the NAD+ salvage pathway in hypothalamic astrocytes. Furthermore, inhibition of this pathway mitigates hypothalamic inflammation and attenuates the development of obesity in male mice fed a high-fat diet (HFD). Mechanistically, CD38 functions downstream of the NAD+ salvage pathway in hypothalamic astrocytes burdened with excess fat. The activation of the astrocytic NAMPT-NAD+-CD38 axis in response to fat overload induces proinflammatory responses in the hypothalamus. It also leads to aberrantly activated basal Ca2+ signals and compromised Ca2+ responses to metabolic hormones such as insulin, leptin, and glucagon-like peptide 1, ultimately resulting in dysfunctional hypothalamic astrocytes. Our findings highlight the significant contribution of the hypothalamic astrocytic NAD+ salvage pathway, along with its downstream CD38, to HFD-induced obesity.


Subject(s)
Dietary Fats , NAD , Male , Mice , Animals , NAD/metabolism , Dietary Fats/metabolism , Astrocytes/metabolism , Obesity/metabolism , Hypothalamus/metabolism , Cytokines/metabolism
9.
Heliyon ; 10(3): e25561, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356587

ABSTRACT

Purpose: Although eating is imperative for survival, few comprehensive methods have been developed to assess freely moving nonhuman primates' eating behavior. In the current study, we distinguished eating behavior into appetitive and consummatory phases and developed nine indices to study them using manual and deep learning-based (DeepLabCut) techniques. Method: The indices were utilized to three rhesus macaques by different palatability and hunger levels to validate their utility. To execute the experiment, we designed the eating behavior cage and manufactured the artificial food. The total number of trials was 3, with 1 trial conducted using natural food and 2 trials using artificial food. Result: As a result, the indices of highest utility for hunger effect were approach frequency and consummatory duration. Appetitive composite score and consummatory duration showed the highest utility for palatability effect. To elucidate the effects of hunger and palatability, we developed 2D visualization plots based on manual indices. These 2D visualization methods could intuitively depict the palatability perception and hunger internal state. Furthermore, the developed deep learning-based analysis proved accurate and comparable with manual analysis. When comparing the time required for analysis, deep learning-based analysis was 24-times faster than manual analysis. Moreover, temporal and spatial dynamics were visualized via manual and deep learning-based analysis. Based on temporal dynamics analysis, the patterns were classified into four categories: early decline, steady decline, mid-peak with early incline, and late decline. Heatmap of spatial dynamics and trajectory-related visualization could elucidate a consumption posture and a higher spatial occupancy of food zone in hunger and with palatable food. Discussion: Collectively, this study describes a newly developed and validated multi-phase method for assessing freely moving nonhuman primate eating behavior using manual and deep learning-based analyses. These effective tools will prove valuable in food reward (palatability effect) and homeostasis (hunger effect) research.

10.
Soa Chongsonyon Chongsin Uihak ; 35(1): 66-74, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38204743

ABSTRACT

Food addiction refers to a condition in which individuals exhibit addictive-like behaviors toward food, like those observed in substance abuse. Although still debated, evidence supporting the validity and usefulness of the concept of food addiction is growing. Food addiction is particularly associated with obesity and eating disorders involving binge eating. This study discusses the cases of two adolescent patients who presented with anorexia nervosa. During the recovery phase of anorexia nervosa, binge eating was observed, and the patterns of binge eating significantly differed between patients, with and without food addiction. Therefore, healthcare professionals treating eating disorders should be aware of food addiction and modify their treatment strategies accordingly.

12.
Brain Res ; 1829: 148770, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38266888

ABSTRACT

The brain and peripheral organs communicate through hormones and neural connections. Proper communication is required to maintain normal whole-body energy homeostasis. In addition to endocrine system, from the perspective of neural connections for metabolic homeostasis, the role of the sympathetic nervous system has been extensively studied, but understanding of the parasympathetic nervous system is limited. The liver plays a central role in glucose and lipid metabolism. This study aimed to clarify the innervation of parasympathetic nervous system in the liver and its functional roles in metabolic homeostasis. The liver-specific parasympathetic nervous system innervation (PNS) was shown by tissue clearing, immunofluorescence and transgenic mice at the three-dimensional histological level. The parasympathetic efferent signals were manipulated using a chemogenetic technique and the activation of ChAT+ parasympathetic neurons in dorsal motor vagus (DMV) results in the increased blood glucose through the elevated hepatic gluconeogenic and lipogenic gene expression in the liver. Thus, our study showed the evidence of ChAT+ parasympathetic neurons in the liver and its role for hepatic parasympathetic nervous signaling in glucose homeostasis through the regulation of hepatic gene expression.


Subject(s)
Blood Glucose , Vagus Nerve , Mice , Animals , Blood Glucose/metabolism , Vagus Nerve/physiology , Neurons/metabolism , Liver/metabolism , Glucose/metabolism , Mice, Transgenic , Gene Expression
13.
Soa Chongsonyon Chongsin Uihak ; 35(1): 57-65, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38204745

ABSTRACT

Autism spectrum disorder (ASD) can be associated with eating problems. However, currently, there is a lack of established guidelines for assessing and addressing eating behaviors in individuals with ASD. This gap in research exists due to the challenges associated with using traditional assessment methods, which may lead to discrepancies in responses and unintentional potential biases from caregivers. In this review, we provided a comprehensive overview of various eating behaviors commonly observed in individuals with ASD. These behaviors include 1) food neophobia, 2) selective eating, 3) binge eating, 4) food avoidance, 5) chewing and swallowing problems, 6) pica, 7) rumination, 8) rituals, and 9) problematic behaviors. Furthermore, we provide a perspective of utilizing digital tools: 1) augmentative and alternative communication; 2) ecological momentary assessment; and 3) video analysis, behavioral analysis, and facial expression analysis. This review explores existing assessment methods and suggests novel assessment aiding together.

14.
Adv Mater ; 36(4): e2309028, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37991324

ABSTRACT

Quantum dot photodiodes (QPDs) have garnered significant attention because of their unparalleled near-infrared (NIR) detection capabilities, primarily attributable to their size-dependent bandgap tunability. Nevertheless, the broadband absorption spectrum of QPD engenders substantial noise floor within superfluous visible light regions, notably hindering their use in several emerging applications necessitating the detection of faint micro-light signals. To overcome these hurdles, a self-screenable NIR QPD featuring an internal optical filter with a thick polymeric interlayer to reduce electronic noise is demonstrated. This effectively screens out undesirable visible light regions while reducing the ionized defect owing to decreased density of state, yielding an extremely low dark current (≈1010 A cm-2 at V = -1 V). Consequently, the electronic noise spectral density is attained at levels below ≈10-27 -10-28 A2 Hz-1 , and responsivity (R) dropped to 92% within the visible light spectrum.

15.
Small ; : e2308375, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38073328

ABSTRACT

The demand for self-powered photodetectors (PDs) capable of NIR detection without external power is growing with the advancement of NIR technologies such as LIDAR and object recognition. Lead sulfide quantum dot-based photodetectors (PbS QPDs) excel in NIR detection; however, their self-powered operation is hindered by carrier traps induced by surface defects and unfavorable band alignment in the zinc oxide nanoparticle (ZnO NP) electron-transport layer (ETL). In this study, an effective azide-ion (N3 - ) treatment is introduced on a ZnO NP ETL to reduce the number of traps and improve the band alignment in a PbS QPD. The ZnO NP ETL treated with azide ions exhibited notable improvements in carrier lifetime and mobility as well as an enhanced internal electric field within the thin-film heterojunction of the ZnO NPs and PbS QDs. The azide-ion-treated PbS QPD demonstrated a increase in short-circuit current density upon NIR illumination, marking a responsivity of 0.45 A W-1 , specific detectivity of 4 × 1011 Jones at 950 nm, response time of 8.2 µs, and linear dynamic range of 112 dB.

16.
Sci Rep ; 13(1): 21615, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38062157

ABSTRACT

Response to digital healthcare lifestyle modifications is highly divergent. This study aimed to examine the association between single nucleotide polymorphism (SNP) genotypes and clinical efficacy of a digital healthcare lifestyle modification. We genotyped 97 obesity-related SNPs from 45 participants aged 18-39 years, who underwent lifestyle modification via digital cognitive behavioral therapy for obesity for 8 weeks. Anthropometric, eating behavior phenotypes, and psychological measures were analyzed before and after the intervention to identify their clinical efficacy. CETP (rs9939224) SNP significantly predict "super-responders" with greater body mass index (BMI) reduction (p = 0.028; GG - 2.91%, GT - 9.94%), while APOA2 (rs5082) appeared to have some potential for predicting "poor-responders" with lower BMI reduction (p = 0.005; AA - 6.17%, AG + 2.05%, and GG + 5.11%). These SNPs was also associated with significant differences in eating behavior changes, healthy diet proportions, health diet diversity, emotional and restrained eating behavior changes. Furthermore, classification using gene-gene interactions between rs9939224 and rs5082 significantly predicted the best response, with a greater decrease in BMI (p = 0.038; - 11.45% for the best response group (CEPT GT/TT × APOA2 AA) vs. + 2.62% for the worst response group (CEPT GG × APOA2 AG/GG)). CETP and APOA2 SNPs can be used as candidate markers to predict the efficacy of digital healthcare lifestyle modifications based on genotype-based precision medicine.Trial registration: NCT03465306, ClinicalTrials.gov. Registered March, 2018.


Subject(s)
Diet, Healthy , Weight Loss , Humans , Apolipoprotein A-II , Body Mass Index , Cholesterol Ester Transfer Proteins/genetics , Feeding Behavior , Genotype , Life Style , Obesity/genetics , Polymorphism, Single Nucleotide , Weight Loss/genetics
17.
ACS Appl Mater Interfaces ; 15(36): 42836-42844, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37665133

ABSTRACT

Human voice recognition via skin-attachable devices has significant potential for gathering important physiological information from acoustic data without background noise interference. In this study, a highly sensitive and conductive wearable crack-based strain sensor was developed for voice-recognition systems. The sensor was fabricated using a double-layer structure of Ag nanoparticles (NPs) and Ag metal on a biocompatible polydimethylsiloxane substrate. The top metal layer acts as a conducting active layer, whereas the bottom Ag NP layer induces channel cracks in the upper layer, effectively hindering current flow. Subsequently, the double-layer film exhibits a low electrical resistance value (<5 × 10-5 Ω cm), ultrahigh sensitivity (gauge factor = 1870), and a fast response/recovery time (252/168 µs). A sound wave was detected at a high frequency of 15 kHz with a signal-to-noise ratio (SNR) over 40 dB. The sensor exhibited excellent anti-interference characteristics and effectively differentiated between different voice qualities (modal, pressed, and breathy), with a systematic analysis revealing successful detection of the laryngeal state and glottal source. This ultrasensitive wearable sensor has potential applications in various physiological signal measurement methods, personalized healthcare systems, and ubiquitous computing.


Subject(s)
Metal Nanoparticles , Wearable Electronic Devices , Humans , Silver , Electric Conductivity , Sound
18.
Nat Commun ; 14(1): 5605, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37699895

ABSTRACT

We investigate the voltage control of magnetism in a van der Waals (vdW) heterostructure device consisting of two distinct vdW materials, the ferromagnetic Fe3-xGeTe2 and the ferroelectric In2Se3. It is observed that gate voltages applied to the Fe3-xGeTe2/In2Se3 heterostructure device modulate the magnetic properties of Fe3-xGeTe2 with significant decrease in coercive field for both positive and negative voltages. Raman spectroscopy on the heterostructure device shows voltage-dependent increase in the in-plane In2Se3 and Fe3-xGeTe2 lattice constants for both voltage polarities. Thus, the voltage-dependent decrease in the Fe3-xGeTe2 coercive field, regardless of the gate voltage polarity, can be attributed to the presence of in-plane tensile strain. This is supported by density functional theory calculations showing tensile-strain-induced reduction of the magnetocrystalline anisotropy, which in turn decreases the coercive field. Our results demonstrate an effective method to realize low-power voltage-controlled vdW spintronic devices utilizing the magnetoelectric effect in vdW ferromagnetic/ferroelectric heterostructures.

20.
Nat Commun ; 14(1): 4321, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468558

ABSTRACT

Small humanin-like peptide 2 (SHLP2) is a mitochondrial-derived peptide implicated in several biological processes such as aging and oxidative stress. However, its functional role in the regulation of energy homeostasis remains unclear, and its corresponding receptor is not identified. Hereby, we demonstrate that both systemic and intracerebroventricular (ICV) administrations of SHLP2 protected the male mice from high-fat diet (HFD)-induced obesity and improved insulin sensitivity. In addition, the activation of pro-opiomelanocortin (POMC) neurons by SHLP2 in the arcuate nucleus of the hypothalamus (ARC) is involved in the suppression of food intake and the promotion of thermogenesis. Through high-throughput structural complementation screening, we discovered that SHLP2 binds to and activates chemokine receptor 7 (CXCR7). Taken together, our study not only reveals the therapeutic potential of SHLP2 in metabolic disorders but also provides important mechanistic insights into how it exerts its effects on energy homeostasis.


Subject(s)
Hypothalamus , Neurons , Male , Animals , Mice , Hypothalamus/metabolism , Neurons/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Peptides/pharmacology , Peptides/metabolism , Diet, High-Fat/adverse effects , Homeostasis , Mitochondria/metabolism , Pro-Opiomelanocortin/metabolism , Energy Metabolism/physiology
SELECTION OF CITATIONS
SEARCH DETAIL