Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Korean Acad Nurs ; 53(2): 208-221, 2023 Apr.
Article in Korean | MEDLINE | ID: mdl-37164348

ABSTRACT

PURPOSE: This study aimed to investigate COVID-19 vaccination intentions in Korean parents for their children aged 5 to 11 years and the factors influencing them. METHODS: A cross-sectional online survey of 363 parents of children aged 5 to 11 years was conducted in Korea in April 2022. Data were analyzed using independent t-test, χ²-test, Fisher's exact test, and hierarchical logistic regression analysis using SPSS/WIN 26.0 and MedCalc software version 20.113. RESULTS: Of 363 Korean parents with children aged 5 to 11, 42.4% intended to vaccinate their children. Significant factors influencing vaccination intention were the second or third birth order of children (OR = 3.45, 95% CI = 1.45~8.21), vaccine hesitancy-confidence (OR = 2.00, 95% CI = 1.51~2.65), vaccine hesitancy-collective responsibility (OR = 1.57, 95% CI: 1.10~2.25), and COVID-19 anxiety-avoidance (OR = 1.55, 95% CI = 1.13~2.11). CONCLUSION: Findings suggest that COVID-19 vaccine campaigns based on reliable information and evidence from health authorities are needed to increase COVID-19 vaccination. Well-designed health communications for the target population may help to increase parental vaccine acceptance.


Subject(s)
COVID-19 , Intention , Humans , Child , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Sectional Studies , Vaccination , Parents , Republic of Korea
2.
ACS Appl Mater Interfaces ; 15(21): 25484-25494, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37199724

ABSTRACT

The increasing demands for conversion systems for clean energy, wearable devices powered by energy storage systems, and electric vehicles have greatly promoted the development of innovative current collectors to replace conventional metal-based foils, including those in multidimensional forms. In this study, carbon nanotubes (CNTs) with desirable features and ease of processing are used in the preparation of floating catalyst-chemical vapor deposition-derived CNT sheets for potential use as all-around current collectors in two representative energy storage devices: batteries and electrochemical capacitors. Due to their short and multidirectional electron pathways and multimodal porous structures, CNT-based current collectors enhance ion transport kinetics and provide many ion adsorption and desorption sites, which are crucial for improving the performance of batteries and electrochemical capacitors, respectively. By assembling activated carbon-CNT cathodes and prelithiated graphite-CNT anodes, high-performance lithium-ion hybrid capacitors (LIHCs) are successfully demonstrated. Briefly, CNT-based LIHCs exhibit 170% larger volumetric capacities, 24% faster rate capabilities, and 21% enhanced cycling stabilities relative to LIHCs based on conventional metallic current collectors. Therefore, CNT-based current collectors are the most promising candidates for replacing currently used metallic materials and provide a valuable opportunity to possibly redefine the roles of current collectors.

3.
PNAS Nexus ; 2(3): pgad022, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36926227

ABSTRACT

We propose an algorithmic framework of a pluripotent structure evolving from a simple compact structure into diverse complex 3D structures for designing the shape-transformable, reconfigurable, and deployable structures and robots. Our algorithmic approach suggests a way of transforming a compact structure consisting of uniform building blocks into a large, desired 3D shape. Analogous to a fertilized egg cell that can grow into a preprogrammed shape according to coded information, compactly stacked panels named the zygote structure can evolve into arbitrary 3D structures by programming their connection path. Our stacking algorithm obtains this coded sequence by inversely stacking the voxelized surface of the desired structure into a tree. Applying the connection path obtained by the stacking algorithm, the compactly stacked panels named the zygote structure can be deployed into diverse large 3D structures. We conceptually demonstrated our pluripotent evolving structure by energy-releasing commercial spring hinges and thermally actuated shape memory alloy hinges, respectively. We also show that the proposed concept enables the fabrication of large structures in a significantly smaller workspace.

4.
Nat Commun ; 13(1): 6705, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344563

ABSTRACT

Sensory neurons generate spike patterns upon receiving external stimuli and encode key information to the spike patterns, enabling energy-efficient external information processing. Herein, we report an epifluidic electronic patch with spiking sweat clearance using a sensor containing a vertical sweat-collecting channel for event-driven, energy-efficient, long-term wireless monitoring of epidermal perspiration dynamics. Our sweat sensor contains nanomesh electrodes on its inner wall of the channel and unique sweat-clearing structures. During perspiration, repeated filling and abrupt emptying of the vertical sweat-collecting channel generate electrical spike patterns with the sweat rate and ionic conductivity proportional to the spike frequency and amplitude over a wide dynamic range and long time (> 8 h). With such 'spiking' sweat clearance and corresponding electronic spike patterns, the epifluidic wireless patch successfully decodes epidermal perspiration dynamics in an event-driven manner at different skin locations during exercise, consuming less than 0.6% of the energy required for continuous data transmission. Our patch could integrate various on-skin sensors and emerging edge computing technologies for energy-efficient, intelligent digital healthcare.


Subject(s)
Biosensing Techniques , Sweat , Sweat/chemistry , Monitoring, Physiologic , Electrodes , Ions/analysis , Electronics
5.
iScience ; 25(10): 105199, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36248739

ABSTRACT

Buckling is a loss of structural stability. It occurs in long slender structures or thin plate structures which is subjected to compressive forces. For the structural materials, such a sudden change in shape has been considered to be avoided. In this study, we utilize the Au nanowire's buckling instability for the electrical measurement. We confirmed that the high-strength single crystalline Au nanowire with an aspect ratio of 150 and 230-nm-diameter shows classical Euler buckling under constant compressive force without failure. The buckling instability enables stable contact between the Au nanowire and the substrate without any damage. Clearly, the in situ electrical measurement shows a transition of the contact resistance between the nanowire and the substrate from the Sharvin (ballistic limit) mode to the Holm (Ohmic) mode during deformation, enabling reliable electrical measurements. This study suggests Au nanowire probes exhibiting structural instability to ensure stable and precise electrical measurements at the nanoscale.

6.
ACS Appl Mater Interfaces ; 14(36): 40522-40534, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36036800

ABSTRACT

The mechanism by which stromal cells fill voids in injured tissue remains a fundamental question in regenerative medicine. While it is well-established that fibroblasts fill voids by depositing extracellular matrix (ECM) proteins as they migrate toward the wound site, little is known about their ability to adopt an epithelial-like purse-string behavior. To investigate fibroblast behavior during gap closure, we created an artificial wound with a large void space. We discovered that fibroblasts could form a free-standing bridge over deep microvoids, closing the void via purse-string contraction, a mechanism previously thought to be unique to epithelial wound closure. The findings also revealed that myosin II mediated contractility and intercellular adherent junctions were required for the closure of the fibroblast gap in our fabricated three-dimensional artificial wound. To fulfill their repair function under the specific microenvironmental conditions of wounds, fibroblasts appeared to acquire the structural features of epithelial cells, namely, contractile actin bundles that span over multiple cells along the boundary. These findings shed light on a novel mechanism by which stromal cells bridge the 3D gap during physiological processes such as morphogenesis and wound healing.


Subject(s)
Actins , Wound Healing , Actins/metabolism , Epithelial Cells/metabolism , Fibroblasts/metabolism , Myosin Type II , Wound Healing/physiology
7.
ACS Appl Mater Interfaces ; 14(10): 12193-12203, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35245033

ABSTRACT

Despite the increase in demand for deformable electrochemical capacitors as a power source for wearable electronics, significant obstacles remain in developing these capacitors, including their manufacturing complexity and insufficient deformability. With recognition of these challenges, a facile strategy is proposed to fabricate large-scale, lightweight, and mechanically robust composite electrodes composed of ruthenium nanoparticles embedded in freestanding carbon nanotube (CNT)-based nanosheets (Ru@a-CNTs). Surface-modified CNT sheets with hierarchical porous structures can behave as an ideal platform to accommodate a large number of uniformly distributed Ru nanoparticles (Ru/CNT weight ratio of 5:1) while improving compatibility with aqueous electrolytes. Accordingly, Ru@a-CNTs offer a large electrochemically active area, showing a high specific capacitance (∼253.3 F g-1) and stability for over 2000 cycles. More importantly, the exceptional performance and mechanical durability of quasi-solid-state capacitors assembled with Ru@a-CNTs and a PVA-H3PO4 hydrogel electrolyte are successfully demonstrated in that 94% of the initial capacitance is retained after 100 000 cycles of bending deformation and a commercial smartwatch is charged by multiple cells. The feasible large-scale production and potential applicability shown in this study provide a simple and highly effective design strategy for a wide range of energy storage applications from small- to large-scale wearable electronics.

8.
JACS Au ; 1(8): 1158-1177, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34467355

ABSTRACT

NO3 • can compete with omnipotent •OH/SO4 •- in decomposing aqueous pollutants because of its lengthy lifespan and significant tolerance to background scavengers present in H2O matrices, albeit with moderate oxidizing power. The generation of NO3 •, however, is of grand demand due to the need of NO2 •/O3, radioactive element, or NaNO3/HNO3 in the presence of highly energized electron/light. This study has pioneered a singular pathway used to radicalize surface NO3 - functionalities anchored on polymorphic α-/γ-MnO2 surfaces (α-/γ-MnO2-N), in which Lewis acidic Mn2+/3+ and NO3 - served to form •OH via H2O2 dissection and NO3 • via radical transfer from •OH to NO3 - (•OH → NO3 •), respectively. The elementary steps proposed for the •OH → NO3 • route could be energetically favorable and marginal except for two stages such as endothermic •OH desorption and exothermic •OH-mediated NO3 - radicalization, as verified by EPR spectroscopy experiments and DFT calculations. The Lewis acidic strength of the Mn2+/3+ species innate to α-MnO2-N was the smallest among those inherent to α-/ß-/γ-MnO2 and α-/γ-MnO2-N. Hence, α-MnO2-N prompted the rate-determining stage of the •OH → NO3 • route (•OH desorption) in the most efficient manner, as also evidenced by the analysis on the energy barrier required to proceed with the •OH → NO3 • route. Meanwhile, XANES and in situ DRIFT spectroscopy experiments corroborated that α-MnO2-N provided a larger concentration of surface NO3 - species with bi-dentate binding arrays than γ-MnO2-N. Hence, α-MnO2-N could outperform γ-MnO2-N in improving the collision frequency between •OH and NO3 - species and in facilitating the exothermic transition of NO3 - functionalities to surface NO3 • analogues per unit time. These were corroborated by a greater efficiency of α-MnO2-N in decomposing phenol, in addition to scavenging/filtration control runs and DFT calculations. Importantly, supported NO3 • species provided 5-7-fold greater efficiency in degrading textile wastewater than conventional •OH and supported SO4 •- analogues we discovered previously.

9.
Sci Rep ; 11(1): 16269, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381083

ABSTRACT

The interest in skin microbiome differences by ethnicity, age, and gender is increasing. Compared to other ethnic groups, studies on the skin microbiome of Koreans remains insufficient; we investigated facial skin microbiome characteristics according to gender and age among Koreans. Fifty-one healthy participants were recruited, the facial skin characteristics of each donor were investigated, their skin bacterial DNA was isolated and metagenomic analysis was performed. The donors were divided into two groups for age and sex each to analyze their skin microbiomes. Moreover, we investigated the correlation between the skin microbiome and clinical characteristics. The alpha diversity of the skin microbiome was significantly higher in the elderly, and beta diversity was significantly different according to age. The comparative skin microbials showed that the genus Lawsonella was more abundant in the younger age group, and Enhydrobacter was predominant in the older age group. Staphylococcus and Corynebacterium were more abundant in males, while Lactobacillus was more abundant in females. Lawsonella had a negative correlation with skin moisture and brown spots. Staphylococcus and Corynebacterium both had negative correlations with the number of UV spots and positive correlations with transepidermal water loss (TEWL). Furthermore, Staphylococcus aureus had a negative correlation with skin moisture parameters.


Subject(s)
Bacteria/classification , Face/microbiology , Healthy Volunteers , Skin/microbiology , Adult , Age Factors , Aged , Asian People , Bacteria/genetics , DNA Barcoding, Taxonomic , Female , Humans , Male , Metagenomics , Middle Aged , Water Loss, Insensible , Young Adult
10.
Appl Microbiol Biotechnol ; 105(3): 1203-1213, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33443636

ABSTRACT

Recent reports suggest that obesity is caused by dysbiosis of gut microbiota and that it could be prevented or treated through improvement in the composition and diversity of gut microbiota. In this study, high-fat diet (HFD)-induced obese mice were orally administered with Lactobacillus plantarum K50 (K50) isolated from kimchi and Lactobacillus rhamnosus GG (LGG) as a positive control for 12 weeks. Body weight and weights of epididymal, mesenteric, and subcutaneous adipose tissues and the liver were significantly reduced in K50-treated HFD-fed mice compared with HFD-fed mice. The serum triglyceride level was decreased and high-density lipoprotein cholesterol level was increased in K50-treated HFD-fed mice. The gut microbiota analysis showed that the L. plantarum K50 treatment reduced the Firmicutes/Bacteroidetes ratio and improved the gut microbiota composition. In addition, the level of total short-chain fatty acids (SCFAs) in K50-treated HFD-fed mice was higher than that in HFD-fed mice. A remarkable reduction in the fat content of adipose tissue and liver was also observed in K50-treated HFD-fed mice, accompanied by improvements in gene expression related to lipid metabolism, adipogenesis, and SCFA receptors. K50-treated mice had downregulated expression levels of genes and proteins such as TNFα and IL-1ß. Our findings confirm that L. plantarum K50 could be a good candidate for ameliorating fat accumulation and low-grade inflammation in metabolic tissues through gut microbiota improvement.


KEY POINTS: • Lactobacillus plantarum and L. rhamnosus GG were fed to HFD-induced obese mice.• L. plantarum K50 had dramatic ameliorating effects on obesity and related diseases.• These effects may be associated with the restoration of gut microbiota dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Animals , Diet, High-Fat/adverse effects , Inflammation , Mice , Mice, Inbred C57BL , Mice, Obese
11.
Microorganisms ; 8(6)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512895

ABSTRACT

Inflammatory bowel disease (IBD) is a group of conditions involving chronic relapsing-remitting inflammation of the gastrointestinal tract with an unknown etiology. Although the cause-effect relationship between gut microbiota and IBD has not been clearly established, emerging evidence from experimental models supports the idea that gut microbes play a fundamental role in the pathogenesis of IBD. As microbiome-based therapeutics for IBD, the beneficial effects of probiotics have been found in animal colitis models and IBD patients. In this study, based on the dextran sulfate sodium (DSS)-induced colitis mouse model, we investigated Lactobacillus rhamnosus strain LDTM 7511 originating from Korean infant feces as a putative probiotic strain for IBD. The strain LDTM 7511 not only alleviated the release of inflammatory mediators, but also induced the transition of gut microbiota from dysbiotic conditions, exhibiting the opposite pattern in the abundance of DSS colitis-associated bacterial taxa to the DSS group. Our findings suggest that the strain LDTM 7511 has the potential to be used as a probiotic treatment for IBD patients in comparison to L. rhamnosus GG (ATCC 53103), which has been frequently used for IBD studies.

12.
ACS Appl Mater Interfaces ; 12(21): 24231-24241, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32353230

ABSTRACT

Nanostructured flexible electrodes with biological compatibility and intimate electrochemical coupling provide attractive solutions for various emerging bioelectronics and biosensor applications. Here, we develop all-inkjet-printed flexible nanobio-devices with excellent electrochemical coupling by employing amphiphilic biomaterial, an M13 phage, numerical simulation of single-drop formulation, and rational formulations of nanobio-ink. Inkjet-printed nanonetwork-structured electrodes of single-walled carbon nanotubes and M13 phage show efficient electrochemical coupling and hydrostability. Additive printing of the nanobio-inks also allows for systematic control of the physical and chemical properties of patterned electrodes and devices. All-inkjet-printed electrochemical field-effect transistors successfully exhibit pH-sensitive electrical current modulation. Moreover, all-inkjet-printed electrochemical biosensors fabricated via sequential inkjet-printing of the nanobio-ink, electrolytes, and enzyme solutions enable direct electrical coupling within the printed electrodes and detect glucose concentrations at as low as 20 µM. Glucose levels in sweat are successfully measured, and the change in sweat glucose levels is shown to be highly correlated with blood glucose levels. Synergistic combination of additive fabrication by inkjet-printing with directed assembly of nanostructured electrodes by functional biomaterials could provide an efficient means of developing bioelectronic devices for personalized medicine, digital healthcare, and emerging biomimetic devices.


Subject(s)
Bacteriophage M13/chemistry , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Ink , Nanotubes, Carbon/chemistry , Surface-Active Agents/chemistry , Biosensing Techniques/methods , Blood Glucose/analysis , Blood Glucose/chemistry , Electrochemical Techniques/methods , Electrodes , Glucose Oxidase/chemistry , Humans , Male , Polyethyleneimine/chemistry , Sweat/chemistry , Transistors, Electronic
13.
Sci Adv ; 6(15): eaax6212, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32300643

ABSTRACT

This study starts from the counterintuitive question of how we can render conventional stiff, nonstretchable, and even brittle materials sufficiently conformable to fully wrap curved surfaces, such as spheres, without failure. Here, we extend the geometrical design method of computational origami to wrapping. Our computational wrapping approach provides a robust and reliable method for fabricating conformal devices for arbitrary curved surfaces with a computationally designed nonpolyhedral developable net. This computer-aided design transforms two-dimensional (2D)-based materials, such as Si wafers and steel sheets, into various targeted conformal structures that can fully wrap desired 3D structures without fracture or severe plastic deformation. We further demonstrate that our computational wrapping approach enables a design platform that can transform conventional nonstretchable 2D-based devices, such as electroluminescent lighting and flexible batteries, into conformal 3D curved devices.

14.
Nano Lett ; 20(5): 3492-3498, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32302152

ABSTRACT

Speculations regarding electronic and photonic properties of strained germanium (Ge) have perpetually put it into contention for next-generation devices since the start of the information age. Here, the electromechanical coupling of <111> Ge nanowires (NWs) is reported from unstrained conditions to the ultimate tensile strength. Under tensile strain, the conductivity of the NW is enhanced exponentially, reaching an enhancement factor of ∼130 at ∼3.5% of strain. Under strains larger than ∼2.5%, the electrical properties of Ge also exhibit a dependence on the electric field. The conductivity can be further enhanced by ∼2.2× with a high bias condition at ∼3.5% of strain. Cyclic loading tests confirm that the observed electromechanical responses are repeatable, reversible, and related to the changing electronic band structure. These tests reveal the excellent prospects for utilizing strained Ge NWs in photodetector or piezoelectronic transistor applications, but significant challenges remain to realize strict direct band gap devices.

15.
PLoS One ; 15(2): e0228932, 2020.
Article in English | MEDLINE | ID: mdl-32040532

ABSTRACT

Although the beneficial effects of probiotics in the prevention or treatment of metabolic disorders have been extensively researched, the precise mechanisms by which probiotics improve metabolic homeostasis are still not clear. Given that probiotics usually exert a comprehensive effect on multiple metabolic disorders, defining a concurrent mechanism underlying the multiple effects is critical to understand the function of probiotics. In this study, we identified the SIRT1-dependent or independent PGC-1α pathways in multiple organs that mediate the protective effects of a strain of Lactobacillus plantarum against high-fat diet-induced adiposity, glucose intolerance, and dyslipidemia. L. plantarum treatment significantly enhanced the expression of SIRT1, PPARα, and PGC-1α in the liver and adipose tissues under HFD-fed condition. L. plantarum treated mice also exhibited significantly increased expressions of genes involved in bile acid synthesis and reverse cholesterol transport in the liver, browning and thermogenesis of adipose tissue, and fatty acid oxidation in the liver and adipose tissue. Additionally, L. plantarum treatment significantly upregulated the expressions of adiponectin in adipose tissue, irisin in skeletal muscle and subcutaneous adipose tissue (SAT), and FGF21 in SAT. These beneficial changes were associated with a significantly improved HFD-induced alteration of gut microbiota. Our findings suggest that the PGC-1α-mediated pathway could be regarded as a potential target in the development of probiotics-based therapies for the prevention and treatment of metabolic disorders.


Subject(s)
Diet, High-Fat/adverse effects , Metabolic Diseases/prevention & control , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Probiotics/therapeutic use , Adipose Tissue/metabolism , Adiposity , Animals , Bile Acids and Salts/biosynthesis , Cholesterol/metabolism , Dyslipidemias/metabolism , Dyslipidemias/prevention & control , Dyslipidemias/therapy , Gastrointestinal Microbiome , Glucose Intolerance/metabolism , Glucose Intolerance/prevention & control , Glucose Intolerance/therapy , Lactobacillus plantarum/physiology , Lipid Metabolism , Liver/metabolism , Male , Metabolic Diseases/metabolism , Metabolic Diseases/therapy , Mice , Mice, Inbred C57BL , Signal Transduction , Sirtuin 1/metabolism
16.
Nutrients ; 12(1)2020 Jan 19.
Article in English | MEDLINE | ID: mdl-31963808

ABSTRACT

Probiotics can improve the intestinal environment by enhancing beneficial bacteria to potentially regulate lipid levels; however, the underlying mechanisms remain unclear. The aim of this study was to investigate the effect of Lactobacillus plantarum Q180 (LPQ180) on postprandial lipid metabolism and the intestinal microbiome environment from a clinical perspective. A double-blind, randomized, placebo-controlled study was conducted including 70 participants of both sexes, 20 years of age and older, with healthy blood triacylglyceride (TG) levels below 200 mg/dL. Treatment with LPQ180 for 12 weeks significantly decreased LDL-cholesterol (p = 0.042) and apolipoprotein (Apo)B-100 (p = 0.003) levels, and decreased postprandial maximum concentrations (Cmax) and areas under the curve (AUC) of TG, chylomicron TG, ApoB-48, and ApoB-100. LPQ180 treatment significantly decreased total indole and phenol levels (p = 0.019). In addition, there was a negative correlation between baseline microbiota abundance and lipid marker change, which was negatively correlated with metabolites. This study suggests that LPQ180 might be developed as a functional ingredient to help maintain healthy postprandial lipid levels through modulating gut environment.


Subject(s)
Bacteria/drug effects , Gastrointestinal Microbiome/drug effects , Lactobacillus plantarum/physiology , Lipids/blood , Postprandial Period , Probiotics/administration & dosage , Adult , Bacteria/metabolism , Biomarkers/blood , Double-Blind Method , Feces/microbiology , Female , Humans , Male , Middle Aged , Probiotics/adverse effects , Seoul , Time Factors , Treatment Outcome
17.
Gut Microbes ; 11(4): 882-899, 2020 07 03.
Article in English | MEDLINE | ID: mdl-31965894

ABSTRACT

Targeting the gut-liver axis by modulating the gut-microbiome can be a promising therapeutic approach in nonalcoholic fatty liver disease (NAFLD). The aim of this study was to evaluate the effects of single species and a combination of Lactobacillus and Pediococcus in NAFLD mice model. Six-week male C57BL/6J mice were divided into 9 groups (n = 10/group; normal, Western diet, and 7 Western diet-strains [109 CFU/g, 8 weeks]). The strains used were L. bulgaricus, L. casei, L. helveticus, P. pentosaceus KID7, and three combinations (1: L. casei+L. helveticus, 2: L. casei+L. helveticus+P. pentosaceus KID7, and 3: L. casei+L. helveticus+L. bulgaricus). Liver/Body weight ratio, serum and stool analysis, liver pathology, and metagenomics by 16S rRNA-sequencing were examined. In the liver/body ratio, L. bulgaricus (5.1 ± 0.5), L. helveticus (5.2 ± 0.4), P. pentosaceus KID7 (5.5 ± 0.5), and combination1 and 2 (4.2 ± 0.6 and 4.8 ± 0.7) showed significant reductions compared with Western (6.2 ± 0.6)(p < 0.001). In terms of cholesterol and steatosis/inflammation/NAFLD activity, all groups except for L. casei were associated with an improvement (p < .05). The elevated level of tumor necrosis factor-α/interleukin-1ß (pg/ml) in Western (65.8 ± 7.9/163.8 ± 12.2) was found to be significantly reduced in L. bulgaricus (24.2 ± 1.0/58.9 ± 15.3), L. casei (35.6 ± 2.1/62.9 ± 6.0), L. helveticus (43.4 ± 3.2/53.6 ± 7.5), and P. pentosaceus KID7 (22.9 ± 3.4/59.7 ± 12.2)(p < 0.01). Cytokines were improved in the combination groups. In metagenomics, each strains revealed a different composition and elevated Firmicutes/Bacteroidetes ratio in the western (47.1) was decreased in L. bulgaricus (14.5), L. helveticus (3.0), and P. pentosaceus KID7 (13.3). L. bulgaricus, L. casei, L. helveticus, and P. pentosaceus KID7 supplementation can improve NAFLD-progression by modulating gut-microbiome and inflammatory pathway.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus/physiology , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/therapy , Pediococcus pentosaceus/physiology , Probiotics , Animals , Bacteroidetes/growth & development , Cholesterol/blood , Cytokines/metabolism , Diet, Western , Disease Models, Animal , Disease Progression , Firmicutes/growth & development , Inflammation/physiopathology , Liver/pathology , Liver/physiopathology , Male , Metagenomics , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/physiopathology
18.
Nat Commun ; 10(1): 4454, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31575854

ABSTRACT

While cracks are usually considered detrimental, crack generation can be harnessed for various applications, for example in ceramic materials, via directing crack propagation and crack opening. Here, we find that electron beam irradiation prompts a crack suppression phenomenon in a copper (Cu) thin film on a polyimide substrate, allowing for the control of crack formation in terms of both location and shape. Under tensile strain, cracks form on the unirradiated region of the Cu film whereas cracks are prevented on the irradiated region. We attribute this to the enhancement of the adhesion at the Cu-polyimide interface by electrons transmitted through the Cu film. Finally, we selectively form conductive regions in a Cu film on a polyimide substrate under tension and fabricate a strain-responsive organic light-emitting device.

19.
Enzyme Microb Technol ; 120: 52-60, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30396399

ABSTRACT

Enantiopure ß-amino acids are essential precursors of various pharmaceuticals, agrochemicals and other industrially important chemicals. In this study, we selected sixteen potential ω-Transaminases (ω-TAs) by BLAST and phylogenetic tree analysis. These ω-TAs were cloned, purified and tested for their reactivity for the synthesis of model ß-amino acid (R)-3-amino-4-(2,4,5-triflurophenyl) butanoic acid [3-ATfBA], a key precursor for sitagliptin. In an enzymatic cascade, lipase converted ß-ketoester substrate to ß-keto acid, which was subsequently aminated by the selected ω-TA to its corresponding ß-amino acid. A potent enzyme from Ilumatobacter coccineus (ω-TAIC) was identified for the production of 3-ATfBA. The pH dependency of the product inhibition suggested that lowering the reaction pH to 7.0 can circumvent the inhibition of ω-TAIC by 3-ATfBA and about 92.3% conversion of 100 mM ß-keto ester substrate could be achieved. The applicability of this enzymatic system was further evaluated at the scale of 140 mM, wherein 3-ATfBA was generated with excellent conversion (81.9%) and enantioselectivity (99% ee). Furthermore, ω-TAIC was successfully used for the synthesis of various ß-amino acids from their corresponding ß-keto ester substrates.


Subject(s)
Actinobacteria/enzymology , Amino Acids/metabolism , Sitagliptin Phosphate/chemistry , Sitagliptin Phosphate/chemical synthesis , Transaminases/metabolism , Catalytic Domain , Molecular Structure , Substrate Specificity
20.
Small ; 14(43): e1702145, 2018 10.
Article in English | MEDLINE | ID: mdl-29573547

ABSTRACT

With the growing demand for wearable electronics, developing new compatible energy systems is a prominent topic of research. Energy systems mounted on wearable electronics should exhibit high cost efficiency, mechanical robustness, and high electrochemical activity. Herein, all-carbon-based large-area nanocomposites for freely deformable electrochemical capacitors are suggested to address these requirements. The three-dimensionally integrated, self-supported nanocomposites consist of activated carbons (ACs) distributed in direct spinning-derived carbon nanotube (DS-CNT) sheets without any additives, including conducting agents or binders. Owing to synergetic effects of the highly porous AC particles, high electron transport kinetics of CNTs, and facile ion accessibility resulting from acid treatment, the nanocomposites show a greatly improved specific capacitance of 128 F g-1 , compared to that of pristine ACs (62 F g-1 ), based on the total mass of the electrodes. The exceptional mechanical stability of the nanocomposites, which are attached on prestretched elastomer substrates, is confirmed; only a ≈15% increase in the electrical resistance is observed under a tensile strain of 100%, and the initial resistance is fully recovered after releasing. Finally, the outstanding durability and electrochemical performance of the deformable all-carbon-based symmetric capacitors under various mechanical deformations of bending, folding, twisting, and stretching are successfully demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...