Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res ; 55(1): 87, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982477

ABSTRACT

Hepatitis E virus (HEV) is a major cause of viral hepatitis worldwide. Pigs are the natural host of HEV genotype 3 and the main reservoir of HEV. As the host range of HEV genotype 3 expands, the possibility that HEV from various species can be transmitted to humans via pigs is increasing. We investigated the potential cross-species transmission of HEV by infecting minipigs with swine HEV (swHEV), rabbit HEV (rbHEV), and human HEV (huHEV) and examining their histopathological characteristics and distribution in various organs. Fifteen specific-pathogen-free Yucatan minipigs were infected with swHEV, rbHEV, huHEV, or a mock control. In the present study, we analysed faecal shedding, viremia, and serological parameters over a seven-week period. Our results indicated that swHEV exhibited more robust shedding and viremia than non-swHEVs. Only swHEV affected the serological parameters, suggesting strain-specific differences. Histopathological examination revealed distinct patterns in the liver, pancreas, intestine, and lymphoid tissues after infection with each HEV strain. Notably, all three HEVs induced histopathological changes in the pancreas, supporting the association of HEVs with acute pancreatitis. Our results also identified skeletal muscle as a site of HEV antigen presence, suggesting a potential link to myositis. In conclusion, this study provides valuable insights into the infection dynamics of different HEV strains in minipigs, emphasizing the strain-specific variations in virological, serological, and histological parameters. The observed differences in infection kinetics and tissue tropism will contribute to our understanding of HEV pathogenesis and the potential for cross-species transmission.


Subject(s)
Hepatitis E virus , Hepatitis E , Swine Diseases , Swine, Miniature , Animals , Swine , Hepatitis E/veterinary , Hepatitis E/virology , Hepatitis E/transmission , Hepatitis E virus/physiology , Swine Diseases/virology , Swine Diseases/transmission , Swine Diseases/pathology , Specific Pathogen-Free Organisms , Rabbits , Virus Shedding , Humans , Feces/virology , Female , Viremia/veterinary , Viremia/virology
2.
J Microbiol Biotechnol ; 34(8): 1-9, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39081258

ABSTRACT

The inhabitation and parasitism of root-knot nematodes (RKNs) can be difficult to control, as its symptoms can be easily confused with other plant diseases; hence, identifying and controlling the occurrence of RKNs in plants remains an ongoing challenge. Moreover, there are only a few biological agents for controlling these harmful nematodes. In this study, Xenorhabdus sp. SCG isolated from entomopathogenic nematodes of genus Steinernema was evaluated for nematicidal effects under in vitro and greenhouse conditions. The cell-free filtrates of strain SCG showed nematicidal activity against Meloidogyne species J2s, with mortalities of > 88% at a final concentration of 10%, as well as significant nematicidal activity against the three other genera of plant-parasitic nematodes in a dose-dependent manner. Thymine was isolated as active compounds by assayguided fractionation and showed high nematicidal activity against M. incognita. Greenhouse experiments suggested that cell-free filtrates of strain SCG efficiently controlled the nematode population in M. incognita-infested tomatoes (Solanum lycopersicum L., cv. Rutgers). In addition, a significant increase in host plant growth was observed after 45 days of treatment. To our knowledge, this is the first to demonstrate the nematicidal activity spectrum of isolated Xenorhabdus species and their application to S. lycopersicum L., cv. Rutgers under greenhouse conditions. Xenorhabdus sp. SCG could be a promising biological nematicidal agent with plant growth-enhancing properties.

3.
J Med Virol ; 96(4): e29605, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634474

ABSTRACT

Interferon lambda (IFNλ), classified as a type III IFN, is a representative cytokine that plays an important role in innate immunity along with type I IFN. IFNλ can elicit antiviral states by inducing peculiar sets of IFN-stimulated genes (ISGs). In this study, an adenoviral vector expression system with a tetracycline operator system was used to express human IFNλ4 in cells and mice. The formation of recombinant adenovirus (rAd-huIFNλ4) was confirmed using immunohistochemistry assays and transmission electron microscopy. Its purity was verified by quantifying host cell DNA and host cell proteins, as well as by confirming the absence of the replication-competent adenovirus. The transduction of rAd-huIFNλ4 induced ISGs and inhibited four subtypes of the influenza virus in both mouse-derived (LA-4) and human-derived cells (A549). The antiviral state was confirmed in BALB/c mice following intranasal inoculation with 109 PFU of rAd-huIFNλ4, which led to the inhibition of four subtypes of the influenza virus in mouse lungs, with reduced inflammatory lesions. These results imply that human IFNλ4 could induce antiviral status by modulating ISG expression in mice.


Subject(s)
Antiviral Agents , Influenza, Human , Interferon Lambda , Orthomyxoviridae , Animals , Humans , Mice , Antiviral Agents/pharmacology , Immunity, Innate , Influenza, Human/immunology , Influenza, Human/prevention & control , Interferon Lambda/metabolism , Interferon Lambda/pharmacology , Interferon Type I/genetics , Interferons/metabolism , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Genetic Vectors
SELECTION OF CITATIONS
SEARCH DETAIL