Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Light Sci Appl ; 11(1): 24, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35075116

ABSTRACT

Implantable image sensors have the potential to revolutionize neuroscience. Due to their small form factor requirements; however, conventional filters and optics cannot be implemented. These limitations obstruct high-resolution imaging of large neural densities. Recent advances in angle-sensitive image sensors and single-photon avalanche diodes have provided a path toward ultrathin lens-less fluorescence imaging, enabling plenoptic sensing by extending sensing capabilities to include photon arrival time and incident angle, thereby providing the opportunity for separability of fluorescence point sources within the context of light-field microscopy (LFM). However, the addition of spectral sensitivity to angle-sensitive LFM reduces imager resolution because each wavelength requires a separate pixel subset. Here, we present a 1024-pixel, 50 µm thick implantable shank-based neural imager with color-filter-grating-based angle-sensitive pixels. This angular-spectral sensitive front end combines a metal-insulator-metal (MIM) Fabry-Perot color filter and diffractive optics to produce the measurement of orthogonal light-field information from two distinct colors within a single photodetector. The result is the ability to add independent color sensing to LFM while doubling the effective pixel density. The implantable imager combines angular-spectral and temporal information to demix and localize multispectral fluorescent targets. In this initial prototype, this is demonstrated with 45 µm diameter fluorescently labeled beads in scattering medium. Fluorescent lifetime imaging is exploited to further aid source separation, in addition to detecting pH through lifetime changes in fluorescent dyes. While these initial fluorescent targets are considerably brighter than fluorescently labeled neurons, further improvements will allow the application of these techniques to in-vivo multifluorescent structural and functional neural imaging.

2.
Neuron ; 108(1): 66-92, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33058767

ABSTRACT

We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach "integrated neurophotonics"; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging from within the brain itself to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution (e.g., within a 1-mm3 volume of mouse cortex comprising ∼100,000 neurons). We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced en masse with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.


Subject(s)
Brain/diagnostic imaging , Functional Neuroimaging/methods , Neurons/pathology , Optical Imaging/methods , Animals , Brain/pathology , Brain/physiology , Computer Simulation , Computer Systems , Functional Neuroimaging/instrumentation , Microchip Analytical Procedures , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Neural Pathways/physiology , Neurons/physiology , Optical Imaging/instrumentation , Optics and Photonics , Optogenetics
3.
IEEE Trans Biomed Circuits Syst ; 14(4): 636-645, 2020 08.
Article in English | MEDLINE | ID: mdl-32746353

ABSTRACT

This paper presents a device for time-gated fluorescence imaging in the deep brain, consisting of two on-chip laser diodes and 512 single-photon avalanche diodes (SPADs). The edge-emitting laser diodes deliver fluorescence excitation above the SPAD array, parallel to the imager. In the time domain, laser diode illumination is pulsed and the SPAD is time-gated, allowing a fluorescence excitation rejection up to O.D. 3 at 1 ns of time-gate delay. Each SPAD pixel is masked with Talbot gratings to enable the mapping of 2D array photon counts into a 3D image. The 3D image achieves a resolution of 40, 35, and 73 µm in the x, y, and z directions, respectively, in a noiseless environment, with a maximum frame rate of 50 kilo-frames-per-second. We present measurement results of the spatial and temporal profiles of the dual-pulsed laser diode illumination and of the photon detection characteristics of the SPAD array. Finally, we show the imager's ability to resolve a glass micropipette filled with red fluorescent microspheres. The system's 420 µm-wide cross section allows it to be inserted at arbitrary depths of the brain while achieving a field of view four times larger than fiber endoscopes of equal diameter.


Subject(s)
Imaging, Three-Dimensional/instrumentation , Neuroimaging/instrumentation , Optical Imaging/instrumentation , Electronics, Medical/instrumentation , Equipment Design
4.
IEEE J Solid-State Circuits ; 54(11): 2957-2968, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31798187

ABSTRACT

We present an implantable single photon shank-based imager, monolithically integrated onto a single CMOS IC. The imager comprises of 512 single photon avalanche diodes distributed along two shanks, with a 6-bit depth in-pixel memory and an on-chip digital-to-time converter. To scale down the system to a minimally invasive form factor, we substitute optical filtering and focusing elements with a time-gated, angle-sensitive detection system. The imager computationally reconstructs the position of fluorescent sources within a three-dimensional volume of 3.4 mm × 600 µm × 400 µm.

5.
ACS Nano ; 13(1): 812-820, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30596428

ABSTRACT

The thin film transistor (TFT) is a promising biosensor system with great sensitivity, label-free detection, and a quick response time. However, even though the TFT sensor has such advantageous characteristics, the disadvantages hamper the TFT sensor's application in the clinical field. The TFT is susceptible to light, noise, vibration, and limited usage, and this significantly limits its on-site potential as a practical biosensor. Herein, we developed a fully packaged, portable TFT electrochemical biosensor into a chip form, providing both portability through minimizing the laboratory equipment size and multiple safe usages by protecting the semiconductor sensor. Additionally, a safe environment that serves as a miniature probe station minimizes the previously mentioned disadvantages, while providing the means to properly link the TFT biosensor with a portable analyzer. The biosensor was taken into a biosafety level 3 (BSL-3) laboratory setting to analyze highly pathogenic avian influenza virus (HPAIV) samples. This virus quickly accumulates within a host, and therefore, early stage detection is critical to deterring the further spread of the deadly disease to other areas. However, current on-site methods have poor limits of detection (105-106 EID50/mL), and because the virus has low concentration in its early stages, it cannot be detected easily. We have compared the sample measurements from our device with virus concentration data obtained from a RT-PCR (virus range: 100-104 EID50/mL) and have identified an increasing voltage signal which corresponds to increasing virus concentration.


Subject(s)
Biosensing Techniques/methods , Influenza in Birds/virology , Molecular Diagnostic Techniques/veterinary , Transistors, Electronic/standards , Animals , Biosensing Techniques/instrumentation , Biosensing Techniques/veterinary , Ducks/virology , Influenza A virus/isolation & purification , Influenza A virus/pathogenicity , Influenza in Birds/diagnosis , Miniaturization , Molecular Diagnostic Techniques/instrumentation , Sensitivity and Specificity
7.
ACS Appl Mater Interfaces ; 10(44): 38581-38587, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30295452

ABSTRACT

A liquid-permeable concept in a metal-insulator-metal (MIM) structure is proposed to achieve highly sensitive color-tuning property through the change of the effective refractive index of the dielectric insulator layer. A semicontinuous top metal film with nanoapertures, adopted as a transreflective layer for MIM resonator, allows to tailor the nanomorphology of a dielectric layer through selective etching of the underneath insulator layer, resulting in nanopillars and hollow voids in the insulator layer. By allowing outer mediums to enter into the hollow voids of the dielectric layer, such liquid-permeable MIM architecture enables to achieve the wavelength shift as large as 323.5 nm/RIU in the visible range, which is the largest wavelength shift reported so far. Our liquid-permeable approaches indeed provide dramatic color tunablility, a real-time sensing scheme, long-term durability, and reproducibility in a simple and scalable manner.

8.
Adv Mater ; 30(27): e1706764, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29775503

ABSTRACT

Photosensitive materials contain biologically engineered elements and are constructed using delicate techniques, with special attention devoted to efficiency, stability, and biocompatibility. However, to date, no photosensitive material has been developed to replace damaged visual-systems to detect light and transmit the signal to a neuron in the human body. In the current study, artificial nanovesicle-based photosensitive materials are observed to possess the characteristics of photoreceptors similar to the human eye. The materials exhibit considerably effective spectral characteristics according to each pigment. Four photoreceptors originating from the human eye with color-distinguishability are produced in human embryonic kidney (HEK)-293 cells and partially purified in the form of nanovesicles. Under various wavelengths of visible light, electrochemical measurements are performed to analyze the physiological behavior and kinetics of the photoreceptors, with graphene, performing as an electrode, playing an important role in the lipid bilayer deposition and oxygen reduction processes. Four nanovesicles with different photoreceptors, namely, rhodopsin (Rho), short-, medium-, and longwave sensitive opsin 1 (1SW, 1MW, 1LW), show remarkable color-dependent characteristics, consistent with those of natural human retina. With four different light-emitting diodes for functional verification, the photoreceptors embedded in nanovesicles show remarkably specific color sensitivity. This study demonstrates the potential applications of light-activated platforms in biological optoelectronic industries.

9.
Adv Healthc Mater ; 6(20)2017 Oct.
Article in English | MEDLINE | ID: mdl-28885777

ABSTRACT

There is an explosive interest in the immediate and cost-effective analysis of field-collected biological samples, as many advanced biodetection tools are highly sensitive, yet immobile. On-site biosensors are portable and convenient sensors that provide detection results at the point of care. They are designed to secure precision in highly ionic and heterogeneous solutions with minimal hardware. Among various methods that are capable of such analysis, field-effect biosensors are promising candidates due to their unique sensitivity, manufacturing scalability, and integrability with computational circuitry. Recent developments in nanotechnological surface modification show promising results in sensing from blood, serum, and urine. This report gives a particular emphasis on the on-site efficacy of recently published field-effect biosensors, specifically, detection limits in physiological solutions, response times, and scalability. The survey of the properties and existing detection methods of four promising biotargets, exosomes, bacteria, viruses, and metabolites, aims at providing a roadmap for future field-effect and other on-site biosensors.


Subject(s)
Biosensing Techniques/methods , Bacteria/isolation & purification , Biomarkers/blood , Biomarkers/urine , Biosensing Techniques/instrumentation , Graphite/chemistry , Humans , Microfluidics/methods , Nanostructures/chemistry , Nanotubes, Carbon/chemistry , Point-of-Care Systems , Transistors, Electronic , Viruses/isolation & purification
10.
Adv Healthc Mater ; 6(13)2017 Jul.
Article in English | MEDLINE | ID: mdl-28509437

ABSTRACT

Current methods to detect avian influenza viruses (AIV) are time consuming and lo inw sensitivity, necessitating a faster and more sensitive sensor for on-site epidemic detection in poultry farms and urban population centers. This study reports a field effect transistor (FET) based AIV sensor that detects nucleoproteins (NP) within 30 minutes, down to an LOD of 103 EID50 mL-1 from a live animal cloacal swab. Previously reported FET sensors for AIV detection have not targeted NPs, an internal protein shared across multiple strains, due to the difficulty of field-effect sensing in a highly ionic lysis buffer. The AIV sensor overcomes the sensitivity limit with an FET-based platform enhanced with a disposable well gate (DWG) that is readily replaceable after each measurement. In a single procedure, the virus-containing sample is immersed in a lysis buffer mixture to expose NPs to the DWG surface. In comparison with commercial AIV rapid kits, the AIV sensor is proved to be highly sensitive, fast, and compact, proving its potential effectiveness as a portable biosensor.


Subject(s)
Biosensing Techniques/methods , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza in Birds/diagnosis , Nucleoproteins/metabolism , Viral Proteins/metabolism , Animals , Chickens , Cloaca/virology
11.
Nanoscale ; 7(43): 18089-95, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26469873

ABSTRACT

The modification of deoxyribonucleic acid (DNA) samples by sequencing the order of bases and doping copper ions opens the possibility for the design of novel nanomaterials exhibiting large optical nonlinearity. We investigated the nonlinear characteristics of copper-ion doped double crossover DNA samples for the first time to the best of our knowledge by using Z-scan and four-wave mixing methods. To accelerate the nonlinear characteristics, we prepared two types of unique DNA nanostructures composed of 148 base pairs doped with copper ions with a facile annealing method. The outstanding third-order nonlinear optical susceptibility of the copper-ion-doped DNA solution, 1.19 × 10(-12) esu, was estimated by the conventional Z-scan measurement, whereas the four-wave mixing experiment was also investigated. In the visible spectral range, the copper-ion-doped DNA solution samples provided competent four-wave mixing signals with a remarkable conversion efficiency of -4.15 dB for the converted signal at 627 nm. The interactions between DNA and copper ions contribute to the enhancement of nonlinearity due to structural and functional changes. The present study signifies that the copper-ion-doped double crossover DNA is a potential candidate as a highly efficient novel material for further nonlinear optical applications.


Subject(s)
Copper/chemistry , DNA/chemistry , Nanostructures/chemistry
12.
Sci Rep ; 5: 10280, 2015 May 22.
Article in English | MEDLINE | ID: mdl-25998840

ABSTRACT

Terahertz (THz) electromagnetic wave has been widely used as a spectroscopic probe to detect the collective vibrational mode in vast molecular systems and investigate dielectric properties of various materials. Recent technological advances in generating intense THz radiation and the emergence of THz plasmonics operating with nanoscale structures have opened up new pathways toward THz applications. Here, we present a new opportunity in engineering the state of matter at the atomic scale using THz wave and a metallic nanostructure. We show that a medium strength THz radiation of 22 kV/cm can induce ionization of ambient carbon atoms through interaction with a metallic nanostructure. The prepared structure, made of a nano slot antenna and a nano island located at the center, acts as a nanogap capacitor and enhances the local electric field by two orders of magnitudes thereby causing the ionization of ambient carbon atoms. Ionization and accumulation of carbon atoms are also observed through the change of the resonant condition of the nano slot antenna and the shift of the characteristic mode in the spectrum of the transmitted THz waves.

SELECTION OF CITATIONS
SEARCH DETAIL
...