Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Biomol Ther (Seoul) ; 32(3): 309-318, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38589292

ABSTRACT

Compared to other organs, the brain has limited antioxidant defenses. In particular, the hippocampus is the central region for learning and memory and is highly susceptible to oxidative stress. Glial cells are the most abundant cells in the brain, and sustained glial cell activation is critical to the neuroinflammation that aggravates neuropathology and neurotoxicity. Therefore, regulating glial cell activation is a promising neurotherapeutic treatment. Quinic acid and its derivatives possess anti-oxidant and anti-inflammatory properties. Although previous studies have evidenced quinic acid's benefit on the brain, in vivo and in vitro analyses of its anti-oxidant and anti-inflammatory properties in glial cells have yet to be established. This study investigated quinic acid's rescue effect in lipopolysaccharide (LPS)-induced behavior impairment. Orally administering quinic acid restored social impairment and LPS-induced spatial and fear memory. In addition, quinic acid inhibited proinflammatory mediator, oxidative stress marker, and mitogen-activated protein kinase (MAPK) activation in the LPS-injected hippocampus. Quinic acid inhibited nitrite release and extracellular signal-regulated kinase (ERK) phosphorylation in LPS-stimulated astrocytes. Collectively, quinic acid restored impaired neuroinflammation-induced behavior by regulating proinflammatory mediator and ERK activation in astrocytes, demonstrating its potential as a therapeutic agent for neuroinflammation-induced brain disease treatments.

2.
Biomol Ther (Seoul) ; 32(3): 319-328, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38627097

ABSTRACT

Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in brain injury following a transient brain ischemic stroke. However, its role in permanent brain ischemic stroke remains unknown. To address this, we investigated whether LPA1 could contribute to brain injury of mice challenged by permanent middle cerebral artery occlusion (pMCAO). A selective LPA1 antagonist (AM152) was used as a pharmacological tool for this investigation. When AM152 was given to pMCAO-challenged mice one hour after occlusion, pMCAO-induced brain damage such as brain infarction, functional neurological deficits, apoptosis, and blood-brain barrier disruption was significantly attenuated. Histological analyses demonstrated that AM152 administration attenuated microglial activation and proliferation in injured brain after pMCAO challenge. AM152 administration also attenuated abnormal neuroinflammatory responses by decreasing expression levels of pro-inflammatory cytokines while increasing expression levels of anti-inflammatory cytokines in the injured brain. As underlying effector pathways, NF-κB, MAPKs (ERK1/2, p38, and JNKs), and PI3K/Akt were found to be involved in LPA1-dependent pathogenesis. Collectively, these results demonstrate that LPA1 can contribute to brain injury by permanent ischemic stroke, along with relevant pathogenic events in an injured brain.

3.
Front Bioeng Biotechnol ; 12: 1335474, 2024.
Article in English | MEDLINE | ID: mdl-38328444

ABSTRACT

Levodopa, a dopamine prodrug, alleviates the motor symptoms of Parkinson's disease (PD), but its chronic use gives rise to levodopa-induced dyskinesia (LID). However, it remains unclear whether levodopa pharmacodynamics is altered during the progressive onset of LID. Using in vivo fast-scan cyclic voltammetry and second-derivative-based background drift removal, we continuously measured tonic dopamine levels using high temporal resolution recording over 1-h. Increases to tonic dopamine levels following acute levodopa administration were slow and marginal within the naïve PD model. However, these levels increased faster and higher in the LID model. Furthermore, we identified a strong positive correlation of dyskinetic behavior with the rate of dopamine increase, but much less with its cumulative level, at each time point. Here, we identified the altered signature of striatal DA dynamics underlying LID in PD using an advanced FSCV technique that demonstrates the long-range dynamics of tonic dopamine following drug administration.

4.
Article in English | MEDLINE | ID: mdl-38083281

ABSTRACT

Quantitative measurement of the phasic (changes in several seconds) and tonic (changes in minutes to hours) level changes of neurotransmitters is an essential technique for understanding brain functions and brain diseases regulated by the neurotransmitters. However, monitoring phasic and tonic levels of multiple neurotransmitters is still a challenging technology. Microdialysis can measure the tonic levels of multiple neurotransmitters simultaneously but has a low temporal resolution (minute) to analyze precisely. Fast-scan cyclic voltammetry (FSCV) has high temporal resolution and high sensitivity, but it was not able to simultaneously measure the tonic level of multiple neurotransmitters. The recently proposed deep learning-based FSCV method was still only capable of phasic concentration estimation of neurotransmitters. In this study, we estimate the tonic levels of dopamine and serotonin simultaneously by training a deep-learning network with the extracted tonic information from the FSCV. The proposed deep learning model was validated in vitro to simultaneously estimate tonic concentrations of two neurotransmitters with statistically significantly higher accuracy than previously proposed background subtraction-based models (p<0.001). In particular, in the case of serotonin concentration estimation error, the proposed model showed higher prediction performance than the background subtraction-based model (48 nM and 73 nM, respectively). We expect that the proposed technique will help simultaneous measurement of the phasic and tonic levels of numerous neurotransmitters in vivo soon.Clinical Relevance- This study proposes a method to simultaneously measure tonic dopamine and tonic serotonin with high temporal resolution with a single electrode in the brain.


Subject(s)
Deep Learning , Dopamine , Serotonin , Brain , Neurotransmitter Agents
5.
Opt Express ; 31(23): 39261-39278, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38018009

ABSTRACT

Quantum identity authentication serves as a crucial technology for secure quantum communication, but its security often faces challenges due to quantum hacking of measurement devices. This study introduces a measurement-device-independent mutual quantum identity authentication (MDI MQIA) scheme capable of ensuring secure user authentication, despite the use of measurement devices vulnerable to quantum hacking. To realize the MDI MQIA scheme, we proposed and applied a modified Bell state measurement based on linear optics, enabling the probabilistic measurement of all Bell states. Furthermore, the proposed experimental setup adopted a plug-and-play architecture, thus efficiently establishing the indistinguishability of two photons prepared by the communication members. Finally, we successfully performed a proof-of-principle experimental demonstration of the proposed scheme using a field-deployed fiber, achieving quantum bit error rates of less than 3%.

6.
Cells ; 12(17)2023 08 23.
Article in English | MEDLINE | ID: mdl-37681864

ABSTRACT

Stroke is a major global health problem that causes significant mortality and long-term disability. Post-stroke neurological impairment is a complication that is often underestimated with the risk of persistent neurological deficits. Although traditional Chinese medicines have a long history of being used for stroke, their scientific efficacy remains unclear. Scutellaria baicalensis, an herbal component known for its anti-inflammatory and antioxidant properties, has traditionally been used to treat brain disorders. This study investigated the therapeutic effects of the Scutellaria baicalensis extraction (SB) during the acute stage of ischemic stroke using photothrombotic (PTB)-induced and transient middle cerebral artery occlusion (tMCAO) model mice. We found that SB mitigated ischemic brain injury, as evidenced by a significant reduction in the modified neurological severity score in the acute stage of PTB and both the acute and chronic stages of tMCAO. Furthermore, we elucidated the regulatory role of SB in the necroptosis and pyroptosis pathways during the acute stage of stroke, underscoring its protective effects. Behavioral assessments demonstrated the effectiveness of SB in ameliorating motor dysfunction and cognitive impairment compared to the group receiving the vehicle. Our findings highlight the potential of SB as a promising therapeutic candidate for stroke. SB was found to help modulate the programmed cell death pathways, promote neuroprotection, and facilitate functional recovery.


Subject(s)
Ischemic Stroke , Stroke , Animals , Mice , Ischemic Stroke/drug therapy , Scutellaria baicalensis , Stroke/complications , Stroke/drug therapy , Apoptosis , Pyroptosis
7.
Exp Mol Med ; 55(8): 1806-1819, 2023 08.
Article in English | MEDLINE | ID: mdl-37537215

ABSTRACT

Social interaction among conspecifics is essential for maintaining adaptive, cooperative, and social behaviors, along with survival among mammals. The 5-hydroxytryptamine (5-HT) neuronal system is an important neurotransmitter system for regulating social behaviors; however, the circadian role of 5-HT in social interaction behaviors is unclear. To investigate whether the circadian nuclear receptor REV-ERBα, a transcriptional repressor of the rate-limiting enzyme tryptophan hydroxylase 2 (Tph2) gene in 5-HT biosynthesis, may affect social interaction behaviors, we generated a conditional knockout (cKO) mouse by targeting Rev-Erbα in dorsal raphe (DR) 5-HT neurons (5-HTDR-specific REV-ERBα cKO) using the CRISPR/Cas9 gene editing system and assayed social behaviors, including social preference and social recognition, with a three-chamber social interaction test at two circadian time (CT) points, i.e., at dawn (CT00) and dusk (CT12). The genetic ablation of Rev-Erbα in DR 5-HTergic neurons caused impaired social interaction behaviors, particularly social preference but not social recognition, with no difference between the two CT points. This deficit of social preference induced by Rev-Erbα in 5-HTDR-specific mice is functionally associated with real-time elevated neuron activity and 5-HT levels at dusk, as determined by fiber-photometry imaging sensors. Moreover, optogenetic inhibition of DR to nucleus accumbens (NAc) 5-HTergic circuit restored the impairment of social preference in 5-HTDR-specific REV-ERBα cKO mice. These results suggest the significance of the circadian regulation of 5-HT levels by REV-ERBα in regulating social interaction behaviors.


Subject(s)
Circadian Rhythm , Nuclear Receptor Subfamily 1, Group D, Member 1 , Social Behavior , Animals , Mice , Circadian Rhythm/genetics , Dorsal Raphe Nucleus/metabolism , Mammals/metabolism , Mice, Knockout , Neurons/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Serotonin , Social Interaction
8.
Int J Mol Sci ; 24(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37175425

ABSTRACT

The NLRP3 inflammasome is upregulated by various agents, such as nuclear factor-kappa B (NF-κB), lipopolysaccharide (LPS), and adenosine triphosphate (ATP). The NLRP3 inflammasome facilitations the maturation of interleukin (IL)-1ß, a proinflammatory cytokine that is critically involved in the pathogenesis of atopic dermatitis (AD). Although the NLRP3 inflammasome clearly exacerbates AD symptoms such as erythema and pruritus, drugs for AD patients targeting the NLRP3 inflammasome are still lacking. Based on the previous findings that Mentha arvensis essential oil (MAEO) possesses strong anti-inflammatory and anti-AD properties through its inhibition of the ERK/NF-κB signaling pathway, we postulated that MAEO might be capable of modulating the NLRP3 inflammasome in AD. The aim of this research was to investigate whether MAEO affects the inhibition of NLRP3 inflammasome activation in murine bone marrow-derived macrophages (BMDMs) stimulated with LPS + ATP in vitro and in a murine model displaying AD-like symptoms induced by 2,4-dinitrochlorobenzene (DNCB) in vivo. We found that MAEO inhibited the expression of NLRP3 and caspase-1, leading to the suppression of NLRP3 inflammasome activation and IL-1ß production in BMDMs stimulated with LPS + ATP. In addition, MAEO exhibited efficacy in ameliorating AD symptoms in a murine model induced by DNCB, as indicated by the reduction in dermatitis score, ear thickness, transepidermal water loss (TEWL), epidermal thickness, and immunoglobulin E (IgE) levels. Furthermore, MAEO attenuated the recruitment of NLRP3-expressing macrophages and NLRP3 inflammasome activation in murine dorsal skin lesions induced by DNCB. Overall, we provide evidence for the anti-AD effects of MAEO via inhibition of NLRP3 inflammasome activation.


Subject(s)
Dermatitis, Atopic , Inflammasomes , Animals , Mice , Inflammasomes/metabolism , Dinitrochlorobenzene/adverse effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Inbred BALB C , Lipopolysaccharides/toxicity , Disease Models, Animal , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Cytokines/metabolism
9.
Sci Rep ; 13(1): 3810, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36882516

ABSTRACT

Here, we propose a quantum asymmetric key cryptography scheme using Grover's quantum search algorithm. In the proposed scheme, Alice generates a pair of public and private keys, keeps the private keys safe, and only discloses public keys to the outside. Bob uses Alice's public key to send a secret message to Alice and Alice uses her private key to decrypt the secret message. Furthermore, we discuss the safety of quantum asymmetric key encryption techniques based on quantum mechanical properties.

10.
Anal Chem ; 95(6): 3153-3159, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36656793

ABSTRACT

Dopamine (DA) homeostasis influences emotions, neural circuit development, cognition, and the reward system. Dysfunctions in DA regulation can lead to neurological disorders, including depression, developmental disorders, and addiction. DA homeostasis disruption is a primary cause of Parkinson's Disease (PD). Therefore, understanding the relationship between DA homeostasis and PD progression may clarify the mechanisms for pharmacologically treating PD. This study developed a novel in vitro DA homeostasis platform which consists of three main parts: (1) a microfluidic device for culturing DAergic neurons, (2) an optical detection system for reading DA levels, and (3) an automatic closed-loop control system that establishes when and how much medication to infuse; this uses a microfluidic device that can cultivate DAergic neurons, perfuse solutions, perform in vitro PD modeling, and continuously monitor DA concentrations. The automatically controlled closed-loop control system simultaneously monitors pharmacological PD treatment to support long-term monitoring of DA homeostasis. SH-SY5Y neuroblastoma cells were chosen as DAergic neurons. They were cultivated in the microfluidic device, and real-time cellular DA level measurements successfully achieved long-term monitoring and modulation of DA homeostasis. When applied in combination with multiday cell culture, this advanced system can be used for drug screening and fundamental biological studies.


Subject(s)
Neuroblastoma , Parkinson Disease , Humans , Dopamine , Microfluidics , Dopaminergic Neurons , Homeostasis
11.
Ear Nose Throat J ; 102(11): 742-745, 2023 Nov.
Article in English | MEDLINE | ID: mdl-34191618

ABSTRACT

We report a rare case of isolated malleus dislocation into the external auditory canal with lateralized intact tympanic membrane following a head trauma. The patient was a 63-year-old woman who presented at the outpatient department of our institute with hearing loss of 10 years' duration after a bicycle accident. During physical examination of the patient, total dislocation of the malleus-like bony structure into the external auditory canal on the right side was observed. In the computed tomography scan, an isolated malleus dislocation with intact incus-stapes articulation was identified. The patient was successfully treated with endoscopic exploratory tympanotomy and partial ossicular replacement prosthesis. The isolated malleus dislocation can rarely occur after trauma. A careful diagnostic step through history, physical examination, and temporal bone computed tomography scan are needed to confirm this rare condition.


Subject(s)
Malleus , Ossicular Prosthesis , Female , Humans , Middle Aged , Malleus/surgery , Ear Canal/diagnostic imaging , Ear Canal/surgery , Incus/diagnostic imaging , Incus/surgery , Stapes
12.
Parkinsons Dis ; 2022: 4382145, 2022.
Article in English | MEDLINE | ID: mdl-36407681

ABSTRACT

The hemiparkinsonian nonhuman primate model induced by unilateral injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the carotid artery is used to study Parkinson's disease. However, there have been no studies that the contralateral distribution of MPTP via the cerebral collateral circulation is provided by both the circle of Willis (CoW) and connections of the carotid artery. To investigate whether MPTP-induced unilaterally damaged regions were determined by asymmetrical cerebral blood flow, the differential asymmetric damage of striatal subregions, and examined structural asymmetries in a circle of Willis, and blood flow velocity of the common carotid artery were observed in three monkeys that were infused with MPTP through the left internal carotid artery. Lower flow velocity in the ipsilateral common carotid artery and a higher ratio of ipsilateral middle cerebral artery diameter to anterior cerebral artery diameter resulted in unilateral damage. Additionally, the unilateral damaged monkey observed the apomorphine-induced contralateral rotation behavior and the temporary increase of plasma RANTES. Contrastively, higher flow velocity in the ipsilateral common carotid artery was observed in the bilateral damaged monkey. It is suggested that asymmetry of blood flow velocity and structural asymmetry of the circle of Willis should be taken into consideration when establishing more efficient hemiparkinsonian nonhuman primate models.

13.
Nat Commun ; 13(1): 6760, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36351937

ABSTRACT

The human light modulation response allows humans to perceive objects clearly by receiving the appropriate amount of light from the environment. This paper proposes a biomimetic ocular prosthesis system that mimics the human light modulation response capable of pupil and corneal reflections. First, photoinduced synaptic properties of the quantum dot embedded photonic synapse and its biosimilar signal transmission is confirmed. Subsequently, the pupillary light reflex is emulated by incorporating the quantum dot embedded photonic synapse, electrochromic device, and CMOS components. Moreover, a solenoid-based eyelid is connected to the pupillary light reflex system to emulate the corneal reflex. The proposed ocular prosthesis system represents a platform for biomimetic prosthesis that can accommodate an appropriate amount of stimulus by self-regulating the intensity of external stimuli.


Subject(s)
Pupil , Reflex, Pupillary , Humans , Pupil/physiology , Reflex, Pupillary/physiology , Eye, Artificial , Biomimetics , Autonomic Nervous System
14.
Antioxidants (Basel) ; 11(9)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36139909

ABSTRACT

Terpenoids are widely distributed in nature, especially in the plant kingdom, and exhibit diverse pharmacological activities. In recent years, screening has revealed a wide variety of new terpenoids that are active against different psychiatric disorders. This review synthesized the current published preclinical studies of terpenoid use in psychiatric disorders. This review was extensively investigated to provide empirical evidence regarding the neuropharmacological effects of the vast group of terpenoids in translational models of psychiatric disorders, their relevant mechanisms of action, and treatment regimens with evidence of the safety and psychotropic efficacy. Therefore, we utilized nine (9) electronic databases and performed manual searches of each. The relevant data were retrieved from the articles published until present. We used the search terms "terpenoids" or "terpenes" and "psychiatric disorders" ("psychiatric disorders" OR "psychiatric diseases" OR "neuropsychiatric disorders" OR "psychosis" OR "psychiatric symptoms"). The efficacy of terpenoids or biosynthetic compounds in the terpenoid group was demonstrated in preclinical animal studies. Ginsenosides, bacosides, oleanolic acid, asiatic acid, boswellic acid, mono- and diterpenes, and different forms of saponins and triterpenoids were found to be important bioactive compounds in several preclinical studies of psychosis. Taken together, the findings of the present review indicate that natural terpenoids and their derivatives could achieve remarkable success as an alternative therapeutic option for alleviating the core or associated behavioral features of psychiatric disorders.

15.
Biomedicines ; 10(8)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-36009455

ABSTRACT

Breast cancer has a high risk of recurrence and distant metastasis after remission. Controlling distant metastasis is important for reducing breast cancer mortality, but accomplishing this goal remains elusive. In this study, we investigated the molecular pathways underlying metastasis using cells that mimic the breast cancer distant metastasis process. HCC1143 breast cancer cells were cultured under two-dimensional (2D)-adherent, tumor sphere (TS), and reattached (ReA) culture conditions to mimic primary tumors, circulating tumor cells, and metastasized tumors, respectively. ReA cells demonstrated increased TS formation and enhanced invasion capacity compared to the original 2D-cultured parental cells. In addition, ReA cells had a higher frequency of ESA+CD44+CD24- population, which represents a stem-cell-like cell population. RNA sequencing identified the cholesterol synthesis pathway as one of the most significantly increased pathways in TS and ReA cells compared to parental cells, which was verified by measuring intracellular cholesterol levels. Furthermore, the pharmacological inhibition of the cholesterol synthesis pathway decreased the ability of cancer cells to form TSs and invade. Our results suggest that the cholesterol synthesis pathway plays an important role in the distant metastasis of breast cancer cells by augmenting TS formation and invasion capacity.

16.
Anal Chem ; 94(33): 11459-11463, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35939536

ABSTRACT

The dysregulation of dopamine, a neuromodulator, is associated with a broad spectrum of brain disorders, including Parkinson's disease, addiction, and schizophrenia. Quantitative measurements of dopamine are essential for understanding dopamine functional dynamics. Fast-scan cyclic voltammetry (FSCV) is the most popular electrochemical technique for measuring real-time in vivo dopamine level changes. Standard FSCV has only analyzed "phasic dopamine" (changes in seconds) because the gradual generation of background charging current is inevitable and is the primary noise source in the low-frequency band. Although "tonic dopamine" (changes in minutes to hours) is critical for understanding the dopamine system, an electrochemical technique capable of simultaneously measuring phasic and tonic dopamine in an in vivo environment has not been established. Several modified voltammetric techniques have been developed for measuring tonic dopamine; however, the sampling rates (0.1-0.05 Hz) are too low to be useful. Further investigation of the in vivo applicability of previously developed background drift removal methods for measuring tonic dopamine levels is required. We developed a second-derivative-based background removal (SDBR) method for simultaneously measuring phasic and tonic neurotransmitter levels in real-time. The performance of this technique was tested via in silico and in vitro tonic dopamine experiments. Furthermore, its applicability was tested in vivo. SDBR is a simple, robust, postprocessing technique that can extract tonic neurotransmitter levels from all FSCV data. As SDBR is calculated in individual-scan voltammogram units, it can be applied to any real-time closed-loop system that uses a neurotransmitter as a biomarker.


Subject(s)
Dopamine , Electrochemical Techniques , Electrochemical Techniques/methods , Neurotransmitter Agents
17.
J Neural Eng ; 19(4)2022 08 11.
Article in English | MEDLINE | ID: mdl-35896100

ABSTRACT

Objective. In vivocalcium imaging is a standard neuroimaging technique that allows selective observation of target neuronal activities. In calcium imaging, neuron activation signals provide key information for the investigation of neural circuits. For efficient extraction of the calcium signals of neurons, selective detection of the region of interest (ROI) pixels corresponding to the active subcellular region of the target neuron is essential. However, current ROI detection methods for calcium imaging data exhibit a relatively low signal extraction performance from neurons with a low signal-to-noise power ratio (SNR). This is problematic because a low SNR is unavoidable in many biological experiments.Approach.Therefore, we propose an iterative correlation-based ROI detection (ICoRD) method that robustly extracts the calcium signal of the target neuron from a calcium imaging series with severe noise.Main results.ICoRD extracts calcium signals closer to the ground-truth calcium signal than the conventional method from simulated calcium imaging data in all low SNR ranges. Additionally, this study confirmed that ICoRD robustly extracts activation signals against noise, even withinin vivoenvironments.Significance.ICoRD showed reliable detection from neurons with a low SNR and sparse activation, which were not detected by conventional methods. ICoRD will facilitate our understanding of neural circuit activity by providing significantly improved ROI detection in noisy images.


Subject(s)
Calcium , Neuroimaging , Neurons , Signal-To-Noise Ratio
19.
J Clin Med ; 11(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35268502

ABSTRACT

It is important to find effective and safe pharmacological options for managing cluster headache (CH) because there is limited evidence from studies supporting the general efficacy and safety of pharmacological therapies. This systematic review and network meta-analysis (NMA) analyzed published randomized controlled trials (RCTs) to evaluate the efficacy and safety of pharmacological treatments in patients with CH. The PubMed and Embase databases were searched to identify RCTs that evaluated the efficacy and safety of pharmacological treatments for CH. Efficacy outcomes included frequency and duration of attacks, pain-free rate, and the use of rescue agents. Safety outcomes were evaluated based on the number of patients who experienced adverse events. A total of 23 studies were included in the analysis. The frequency of attacks was reduced (mean difference (MD) = −1.05, 95% confidence interval (CI) = −1.62 to −0.47; p = 0.0004), and the pain-free rate was increased (odds ratio (OR) = 3.89, 95% CI = 2.76−5.48; p < 0.00001) in the pharmacological treatment group, with a lower frequency of rescue agent use than the placebo group. Preventive, acute, and triptan or non-triptan therapies did not show significant differences in efficacy (p > 0.05). In the NMA, different results were shown among the interventions; for example, zolmitriptan 5 mg was more effective than zolmitriptan 10 mg in the pain-free outcome (OR = 0.40, 95% CI = 0.19−0.82; p < 0.05). Pharmacological treatment was shown to be more effective than placebo to manage CH with differences among types of therapies and individual interventions, and it was consistently shown to be associated with the development of adverse events. Thus, individualized therapy approaches should be applied to treat CH in real-world practice.

20.
Neurotherapeutics ; 19(2): 592-607, 2022 03.
Article in English | MEDLINE | ID: mdl-35322351

ABSTRACT

Parkinson's disease is a neurodegenerative disease characterized by progressive dopaminergic neuronal loss. Motor deficits experienced by patients with Parkinson's disease are well documented, but non-motor symptoms, including mood disorders associated with circadian disturbances, are also frequent features. One common phenomenon is "sundowning syndrome," which is characterized by the occurrence of neuropsychiatric symptoms at a specific time (dusk), causing severe quality of life challenges. This study aimed to elucidate the underlying mechanisms of sundowning syndrome in Parkinson's disease and their molecular links with the circadian clock. We demonstrated that 6-hydroxydopamine (6-OHDA)-lesioned mice, as Parkinson's disease mouse model, exhibit increased depression- and anxiety-like behaviors only at dawn (the equivalent of dusk in human). Administration of REV-ERBα antagonist, SR8278, exerted antidepressant and anxiolytic effects in a circadian time-dependent manner in 6-OHDA-lesioned mice and restored the circadian rhythm of mood-related behaviors. 6-OHDA-lesion altered DAergic-specific Rev-erbα and Nurr1 transcription, and atypical binding activities of REV-ERBα and NURR1, which are upstream nuclear receptors for the discrete tyrosine hydroxylase promoter region. SR8278 treatment restored the binding activities of REV-ERBα and NURR1 to the tyrosine hydroxylase promoter and the induction of enrichment of the R/N motif, recognized by REV-ERBα and NURR1, as revealed by ATAC-sequencing; therefore, tyrosine hydroxylase expression was elevated in the ventral tegmental area of 6-OHDA-injected mice, especially at dawn. These results indicate that REV-ERBα is a potential therapeutic target, and its antagonist, SR8278, is a potential drug for mood disorders related to circadian disturbances, namely sundowning syndrome, in Parkinson's disease.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Animals , Humans , Isoquinolines , Mice , Mood Disorders/drug therapy , Mood Disorders/etiology , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Oxidopamine/toxicity , Parkinson Disease/pathology , Quality of Life , Thiophenes , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...