Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
1.
Int Immunopharmacol ; 136: 112284, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823179

ABSTRACT

Cathepsin B (CTSB) and inflammatory cytokines are critical in initiating and developing pancreatitis. Calcineurin, a central calcium (Ca2+)-responsive signaling molecule, mediates acinar cell death and inflammatory responses leading to pancreatitis. However, the detailed mechanisms for regulating CTSB activity and inflammatory cytokine production are unknown. Myricetin (MC) exhibits various biological activities, including anti-inflammatory effects. Here, we aimed to investigate MC effects on pancreatitis and the underlying mechanisms. Prophylactic and therapeutic MC treatment ameliorated the severity of cerulein-, L-arginine-, and PDL-induced acute pancreatitis (AP). The inhibition of CTSB activity by MC was mediated via decreased calcineurin activity and macrophage infiltration, not neutrophils infiltration, into the pancreas. Additionally, calcineurin activity inhibition by MC prevented the phosphorylation of Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) during AP, resulting in the inhibition of CaMKIV phosphorylation and adenosine monophosphate-activated protein kinase (AMPK) dephosphorylation. Furthermore, MC reduced nuclear factor-κB activation by modulating the calcineurin-CaMKIV-IKKα/ß-Iκ-Bα and calcineurin-AMPK-sirtuin1 axes, resulting in reduced production of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. Our results showed that MC alleviated AP severity by inhibiting acinar cell death and inflammatory responses, suggesting that MC as a calcineurin and CaMKK2 signaling modulator may be a potential treatment for AP.

2.
Nutrients ; 16(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542720

ABSTRACT

The purpose of this work was to examine the effects of potassium poly-γ-glutamate (PGA-K) on mice fed a high-fat diet consisting of 60% of total calories for 12 weeks. PGA-K administration reduced the increase in body weight, epididymal fat, and liver weight caused by a high-fat diet compared to the obese group. The triglyceride, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol levels, which are blood lipid indicators, were significantly increased in the obese group but were significantly decreased in the PGA-K-treated group. The administration of PGA-K resulted in a significant inhibition of pro-inflammatory cytokines, including tumor necrosis factor α and interleukin 6. Moreover, the levels of leptin and insulin, which are insulin resistance indicators, significantly increased in the obese group but were significantly decreased in the PGA-K-treated group. These results suggest that PGA-K exhibits a protective effect against obesity induced by a high-fat diet, underscoring its potential as a candidate for obesity treatment.


Subject(s)
Bacillus subtilis , Diet, High-Fat , Isoflavones , Soybean Proteins , Mice , Animals , Diet, High-Fat/adverse effects , Mice, Obese , Obesity/drug therapy , Obesity/etiology , Cholesterol , Glutamates , Mice, Inbred C57BL
4.
ACS Nano ; 18(3): 1958-1968, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38181200

ABSTRACT

Assembling solution-processed van der Waals (vdW) materials into thin films holds great promise for constructing large-scale, high-performance thin-film electronics, especially at low temperatures. While transition metal dichalcogenide thin films assembled in solution have shown potential as channel materials, fully solution-processed vdW electronics have not been achieved due to the absence of suitable dielectric materials and high-temperature processing. In this work, we report on all-solution-processedvdW thin-film transistors (TFTs) comprising molybdenum disulfides (MoS2) as the channel and Dion-Jacobson-phase perovskite oxides as the high-permittivity dielectric. The constituent layers are prepared as colloidal solutions through electrochemical exfoliation of bulk crystals, followed by sequential assembly into a semiconductor/dielectric heterostructure for TFT construction. Notably, all fabrication processes are carried out at temperatures below 250 °C. The fabricated MoS2 TFTs exhibit excellent device characteristics, including high mobility (>10 cm2 V-1 s-1) and an on/off ratio exceeding 106. Additionally, the use of a high-k dielectric allows for operation at low voltage (∼5 V) and leakage current (∼10-11 A), enabling low power consumption. Our demonstration of the low-temperature fabrication of high-performance TFTs presents a cost-effective and scalable approach for heterointegrated thin-film electronics.

5.
Aging Ment Health ; 28(3): 473-481, 2024.
Article in English | MEDLINE | ID: mdl-37655598

ABSTRACT

OBJECTIVES: Disparities impacting dementia health care exist in racial/ethnic minority groups, including Asian Americans, an understudied population in Alzheimer's disease and related dementias. The qualitative study explored caregiving experiences and potential cultural influences among Asian Indian, Chinese, Korean, and Vietnamese family care partners of persons living with dementia. METHODS: We conducted focus groups and individual interviews with 32 care partners from these four Asian subgroups using Zoom, WeChat, or telephone. RESULTS: Four themes emerged from the data: (1) Family obligations influencing caregiving decisions; (2) Evolving challenges related to dementia caregiving; (3) Caregiving burdens/negative impacts from caregiving (relationship burdens and emotional distress); and (4) Coping with their situation in their own ways (cognitive, behavioral, and social strategies).Conclusion: Cultural values (e.g. familism or filial piety) played a significant role in caregiving decisions and experiences. There was a need to raise public awareness of dementia and create culturally and linguistically appropriate training programs for this population.


Subject(s)
Alzheimer Disease , Asian , Caregivers , Humans , Caregivers/psychology , Ethnicity , Minority Groups
6.
Chemosphere ; 349: 140926, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092168

ABSTRACT

The concerns regarding the potential health threats caused by estrogenic endocrine-disrupting chemicals (EDCs) and their mixtures manufactured by the chemical industry are increasing worldwide. Conventional experimental tests for understanding the estrogenic activity of mixtures are expensive and time-consuming. Although non-testing methods using computational modeling approaches have been developed to reduce the number of traditional tests, they are unsuitable for predicting synergistic effects because current prediction models consider only a single chemical. Thus, the development of predictive models is essential for predicting the mixture toxicity, including chemical interactions. However, selecting suitable computational modeling approaches to develop a high-performance prediction model requires considerable time and effort. In this study, we provide a suitable computational approach to develop a predictive model for the synergistic effects of estrogenic activity. We collected datasets on mixture toxicity based on the synergistic effect of estrogen agonistic activity in binary mixtures. Using the model deviation ratio approach, we classified the labels of the binary mixtures as synergistic or non-synergistic effects. We assessed five molecular descriptors, four machine learning-based algorithms, and a deep learning-based algorithm to provide a suitable computational modeling approach. Compared with other modeling approaches, the prediction model using the deep learning-based algorithm and chemical-protein network descriptors exhibited the best performance in predicting the synergistic effects. In conclusion, we developed a new high-performance binary classification model using a deep neural network and chemical-protein network-based descriptors. The developed model will be helpful for the preliminary screening of the synergistic effects of binary mixtures during the development process of chemical products.


Subject(s)
Algorithms , Estrogens , Estrogens/toxicity , Computer Simulation , Neural Networks, Computer , Machine Learning
7.
Laryngoscope ; 134(4): 1581-1590, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37772801

ABSTRACT

INTRODUCTION: Sinonasal organizing hematoma (OH) is a rare, nonneoplastic lesion that often presents with epistaxis, a reddish mass, and destruction of the involved sinonasal structures. Due to its rarity, the demographics, diagnostic modalities, treatment strategies, and outcomes have not yet been studied in a large, long-term study. MATERIALS AND METHODS: Retrospect cohort of 112 sinonasal OH patients treated between 1997 and 2020 in a tertiary, university hospital were evaluated. Demographics, systemic comorbidities, sinonasal surgery history, serum laboratory tests, radiological findings, and treatment results were collected. The present study aimed to assess the accuracy of preoperative computed tomography (CT), Gadolinum-enhanced magnetic resonance (MR), and punch biopsies in detecting sinonasal OH as the most likely diagnosis. In addition, incidental differences by age and year of diagnosis were calculated using the Poisson log-linear regression model. RESULTS: The median age was 44, and 58% were male. Fewer than 20% of these cases had a chronic systemic comorbidity, bleeding tendency, or sinonasal surgery history. MR had the highest accuracy of (87%) to detect sinonasal OH as the most likely diagnosis, compared with contrast-enhanced-CT (53%), punch biopsy (49%), and non-enhanced-CT (16%) (all <0.05). Sinonasal OH incidence did not vary by age, but the yearly rate significantly increased by 1.05 times over 23 years (p < 0.05). Notably, 84% of 112 patients received surgical removal through the assistance of an endoscope, and none had substantial bleeding without preoperative embolization. CONCLUSION: Sinonasal OH was observed regardless of age, sex, systemic comorbidities, bleeding tendency, prior sinonasal surgery, or trauma. Preoperative MR gives the highest accuracy for detecting this disease. Sinonasal OH may be safely managed with endoscopic-assisted surgery removal without embolization. LEVEL OF EVIDENCE: 4 Laryngoscope, 134:1581-1590, 2024.


Subject(s)
Paranasal Sinus Diseases , Humans , Male , Adult , Female , Paranasal Sinus Diseases/diagnosis , Paranasal Sinus Diseases/surgery , Tomography, X-Ray Computed/methods , Hematoma/diagnosis , Hematoma/epidemiology , Hematoma/surgery , Endoscopy/methods , Treatment Outcome , Demography
8.
Environ Sci Technol ; 57(49): 20605-20614, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38038997

ABSTRACT

Methane (CH4) is the second most important greenhouse gas, 27 times as potent as CO2 and responsible for >30% of the current anthropogenic warming. Globally, more than half of CH4 is produced microbially through methanogenesis. Pyrogenic black carbon possesses a considerable electron storage capacity (ESC) and can be an electron donor or acceptor for abiotic and microbial redox transformation. Using wood-derived biochar as a model black carbon, we demonstrated that air-oxidized black carbon served as an electron acceptor to support anaerobic oxidation of organic substrates, thereby suppressing CH4 production. Black carbon-respiring bacteria were immediately active and outcompeted methanogens. Significant CH4 did not form until the bioavailable electron-accepting capacity of the biochar was exhausted. An experiment with labeled acetate (13CH3COO-) yielded 1:1 13CH4 and 12CO2 without biochar and predominantly 13CO2 with biochar, indicating that biochar enabled anaerobic acetate oxidation at the expense of methanogenesis. Methanogens were enriched following acetate fermentation but only in the absence of biochar. The electron balance shows that approximately half (∼2.4 mmol/g) of biochar's ESC was utilized by the culture, corresponding to the portion of the ESC > +0.173 V (vs SHE). These results provide a mechanistic basis for quantifying the climate impact of black carbon and developing ESC-based applications to reduce CH4 emissions from biogenic sources.


Subject(s)
Carbon Dioxide , Electrons , Charcoal , Oxidants , Methane , Acetates , Soil
9.
J Virol ; 97(12): e0173723, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38051260

ABSTRACT

IMPORTANCE: Viruses are constantly evolving to promote propagation in the host. Here, we show that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes host RAD51 for replication. Silencing of RAD51 impaired SARS-CoV-2 propagation. Viral RNA colocalized with RAD51 in the cytoplasm of SARS-CoV-2-infected cells, suggesting that both viral RNA and RAD51 may form a replication complex. We, therefore, evaluated RAD51 inhibitors as possible therapeutic agents against SARS-CoV-2. Indeed, RAD51 inhibitors exerted antiviral activities against not only Wuhan but also variants of SARS-CoV-2. Molecular docking model shows that RAD51 inhibitors impede SARS-CoV-2 propagation by interfering with dimerization of RAD51. These data suggest that RAD51 may represent a novel host-based drug target for coronavirus disease 2019 treatment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/metabolism , COVID-19/virology , Molecular Docking Simulation , Rad51 Recombinase/antagonists & inhibitors , Rad51 Recombinase/metabolism , RNA, Viral , SARS-CoV-2/physiology , Host-Pathogen Interactions
10.
BMJ Open Respir Res ; 10(1)2023 10.
Article in English | MEDLINE | ID: mdl-37914233

ABSTRACT

INTRODUCTION: Several studies have reported that exposure to antibiotics can lead to asthma during early childhood. However, the association between antibiotic use and risk of asthma in the adult population remains unclear. This study aimed to investigate the association between antibiotic use and asthma in adults. METHODS: We used data from the National Health Insurance Service (NHIS)-Health Screening Cohort, which included participants aged ≥40 years who had health screening examination data in 2005-2006. A total of 248 961 participants with a mean age of 55.43 years were enrolled in this retrospective cohort study. To evaluate antibiotic exposure from the NHIS database for 5 years (2002-2006), cumulative usage and multiclass prescriptions were identified, respectively. During the follow-up period (2007-2019), 42 452 patients were diagnosed with asthma. A multivariate Cox proportional hazard regression model was used to assess the association between antibiotic use and newly diagnosed asthma. RESULTS: Participants with antibiotic use for ≥91 days showed a higher risk of asthma (adjusted HR (aHR) 1.84, 95% CI 1.72 to 1.96) compared with participants who did not use antibiotics (n=38 450), with a duration-dependent association (ptrend<0.001). Furthermore, ≥4 antibiotic class user group had an increased risk of asthma (aHR 1.44, 95% CI 1.39 to 1.49) compared with one class of antibiotic use (n=64 698). Also, one class of antibiotic use had a higher risk of asthma (aHR 1.21, 95% CI 1.17 to 1.26) compared with non-users, and it also showed a duration-dependent relationship in all classes, including 1, 2, 3 and ≥4 class group (ptrend<0.001). The duration-response relationship between antibiotic use and increased risk of asthma remained in our sensitivity analyses with the washout and shifting of the index date. CONCLUSIONS: The duration-response pattern observed in antibiotic use and asthma may suggest the implication of proper antibiotic use and management in adults.


Subject(s)
Anti-Bacterial Agents , Asthma , Humans , Adult , Child, Preschool , Middle Aged , Anti-Bacterial Agents/adverse effects , Retrospective Studies , Asthma/drug therapy , Asthma/epidemiology , Asthma/diagnosis , Proportional Hazards Models , Databases, Factual
11.
Sci Rep ; 13(1): 20776, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012277

ABSTRACT

Sugammadex reverses neuromuscular blockade by encapsulating steroidal neuromuscular blockers; therefore, it does not pharmacologically affect sedation levels. However, some clinicians avoid using it because of sudden unwanted acting out or patient arousal. Previous studies suggested sugammadex-induced awakening, but frontal muscle contraction after sugammadex administration compromised reliability of results obtained from EEG-based anesthesia depth monitoring tools like bispectral index (BIS). We hypothesized that sugammadex would affect patients' arousal depending on their baseline levels of sedation. We evaluated arousal signs after sugammadex administration with BIS between 25 - 35 and 45 - 55 under steady-state propofol-remifentanil anesthesia at the end of a surgery (n = 33 in each group). After sugammadex administration, twelve patients with a BIS of 45 - 55 showed clinical signs of awakening but none with a BIS of 25 - 35 (36.4% vs. 0%, P = 0.001). The distribution of the modified observer's assessment of alertness/sedation scale scores was also significantly different between the two groups (P < 0.001). Changes in the BIS were significantly greater in the BIS 45 - 55 than in the 25 - 35 group (median difference, 7; 95% CI 2 - 19, P = 0.002). Arousal after sugammadex was affected by patient sedation levels, and clinical signs of awakening appeared only in those with BIS 45 - 55. Unwanted arousal of the patient should be considered when using sugammadex under shallow anesthesia.Clinical trial registry number: Clinical Trial Registry of Korea ( https://cris.nih.go.kr ; Principal investigator: Jieae Kim; Registration number: KCT0006248; Date of first registration: 11/06/2021).


Subject(s)
Anesthesia , Neuromuscular Blockade , Propofol , Humans , Sugammadex/pharmacology , Propofol/pharmacology , Neuromuscular Blockade/methods , Remifentanil/pharmacology , Reproducibility of Results , Anesthesia/methods , Anesthetics, Intravenous , Arousal
12.
ACS Omega ; 8(39): 36435-36448, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810687

ABSTRACT

Research on siRNA delivery has seen tremendous growth over the past few decades. As one of the major delivery strategies, siRNA bioconjugates offer the potential to enhance and extend the pharmacological properties of siRNAs while minimizing toxicity. In this paper, we suggest the development of a siRNA conjugate platform with peptides and proteins that are ligands of target receptors for cancer treatment. The siRNA bioconjugates target and block the receptor membrane proteins, enter the cells through receptor-mediated endocytosis, and inhibit the expression of that same target membrane receptor, thereby doubly controlling the function of the membrane proteins. The three kinds of bioconjugates targeting CD47, PD-L1, and EGFR were synthesized via two different copper-free click chemistry reactions. Results showed the cellular uptake of each conjugate, reduction of target gene expression, and efficient functional control of receptor proteins. This platform provides an effective approach for regulating membrane proteins in various diseases beyond cancer.

13.
Biosens Bioelectron ; 241: 115625, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37708685

ABSTRACT

We developed a flexible "electrode-thread" array for recording dopamine neurochemicals from a lateral distribution of subcortical targets (up to 16) transverse to the axis of insertion. Ultrathin (∼10 µm diameter) carbon fiber (CF) electrode-threads (CFETs) are clustered into a tight bundle to introduce them into the brain from a single-entry point. The individual CFETs splay laterally in deep brain tissue during insertion due to their innate flexibility. This spatial redistribution allows navigation of the CFETs towards deep brain targets spreading horizontally from the axis of insertion. Commercial "linear" arrays provide single-entry insertion but only allow measurements along the axis of insertion. Horizontally configured arrays inflict separate penetrations for each individual channel. We tested functional performance of our CFET arrays in vivo for recording dopamine and for providing lateral spread to multiple distributed sites in the rat striatum. Spatial spread was further characterized in agar brain phantoms as a function of insertion depth. We also developed protocols to slice the embedded CFETs within fixed brain tissue using standard histology. This method allowed extraction of the precise spatial coordinates of the implanted CFETs and their recording sites as integrated with immunohistochemical staining for surrounding anatomical, cytological, and protein expression labels. Our CFET array has the potential to unlock a wide range of applications, from uncovering the role of neuromodulators in synaptic plasticity, to addressing critical safety barriers in clinical translation towards diagnostic and adaptive treatment in Parkinson's disease and major mood disorders.

14.
Chemosphere ; 341: 140107, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37683945

ABSTRACT

The increased consumption of plastics worldwide, has led to the emergence of nanoplastics as important environmental pollutants. Despite the presence of nanoplastics in aquatic environments, their effects on ecosystems remain largely unexplored due to the analysis complexity. This study investigated the organ accumulation and toxic effects of 50 nm polystyrene nanoplastics (PS-NPs) in Zacco platypus (Z. platypus; also known as pale chub fish) using pyrolyzer-gas chromatography-mass spectrometry (Pyr-GC/MS). PS-NPs accumulated in Z. platypus' brain, digestive tract, branchia, and liver, causing changes at cellular level. Over a 14-day exposure, the accumulated PS-NPs led to observable changes in fish behavior (e.g., Total traveled distance and maximum velocity). In addition, the oxidative stress in each organ of Z. platypus increased as the exposure concentration of PS-NPs increased. This study shows that accumulation of nanoplastics in fish, resulting in behavioral changes and biochemical toxicity. As the pattern of change magnifies with exposure time and concentration, from a long-term perspective, the influence of nanoplastics on aquatic ecosystems become evident. This underscores the urgency for continuous research into the potential risks of nanoplastics in aquatic ecosystems.


Subject(s)
Microplastics , Platypus , Animals , Microplastics/toxicity , Ecosystem , Fishes , Fresh Water , Polystyrenes/toxicity
15.
Int J Mol Sci ; 24(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37569885

ABSTRACT

Icariin, a flavonoid abundant in the herb Epimedium, exhibits anti-ferroptotic activity. However, its impact on nonalcoholic steatohepatitis (NASH) development remains unclear. This study aimed to investigate the potential role of icariin in mitigating methionine choline-deficient (MCD) diet-induced NASH in C57BL/6J mice. The results showed that icariin treatment significantly reduced serum alanine aminotrasferase and aspartate aminotransferase activities while improving steatosis, inflammation, ballooning, and fibrosis in the liver tissues of mice fed the MCD diet. These improvements were accompanied by a substantial reduction in the hepatic iron contents and levels of malondialdehyde and 4-hydroxynonenal, as well as an increase in the activities of catalase and superoxide dismutase. Notably, icariin treatment suppressed the hepatic protein levels of ferroptosis markers such as acyl-CoA synthetase long-chain family member 4 and arachidonate 12-lipoxygenase, which were induced by the MCD diet. Furthermore, transmission electron microscopy confirmed the restoration of morphological changes in the mitochondria, a hallmark characteristic of ferroptosis, by icariin. Additionally, icariin treatment significantly increased the protein levels of Nrf2, a cystine/glutamate transporter (xCT), and glutathione peroxidase 4 (GPX4). In conclusion, our study suggests that icariin has the potential to attenuate NASH, possibly by suppressing ferroptosis via the Nrf2-xCT/GPX4 pathway.


Subject(s)
Choline Deficiency , Ferroptosis , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/complications , Choline/metabolism , Methionine/metabolism , NF-E2-Related Factor 2/metabolism , Choline Deficiency/complications , Choline Deficiency/metabolism , Mice, Inbred C57BL , Liver/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Racemethionine/metabolism , Diet , Dietary Supplements
16.
J Pediatr ; 262: 113620, 2023 11.
Article in English | MEDLINE | ID: mdl-37473993

ABSTRACT

OBJECTIVE: To evaluate factors influencing the diagnostic yield of comprehensive gene panel testing (CGPT) for hearing loss (HL) in children and to understand the characteristics of undiagnosed probands. STUDY DESIGN: This was a retrospective cohort study of 474 probands with childhood-onset HL who underwent CGPT between 2016 and 2020 at a single center. Main outcomes and measures included the association between clinical variables and diagnostic yield and the genetic and clinical characteristics of undiagnosed probands. RESULTS: The overall diagnostic yield was 44% (209/474) with causative variants involving 41 genes. While the diagnostic yield was high in the probands with congenital, bilateral, and severe HL, it was low in those with unilateral, noncongenital, or mild HL; cochlear nerve deficiency; preterm birth; neonatal intensive care unit admittance; certain ancestry; and developmental delay. Follow-up studies on 49 probands with initially inconclusive CGPT results changed the diagnostic status to likely positive or negative outcomes in 39 of them (80%). Reflex to exome sequencing on 128 undiagnosed probands by CGPT revealed diagnostic findings in 8 individuals, 5 of whom had developmental delays. The remaining 255 probands were undiagnosed, with 173 (173/255) having only a single variant in the gene(s) associated with autosomal recessive HL and 28% (48/173) having a matched phenotype. CONCLUSION: CGPT efficiently identifies the genetic etiologies of HL in children. CGPT-undiagnosed probands may benefit from follow-up studies or expanded testing.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Premature Birth , Female , Humans , Child , Infant, Newborn , Retrospective Studies , Premature Birth/genetics , Hearing Loss/diagnosis , Hearing Loss/genetics , Deafness/genetics , Phenotype , Hearing Loss, Sensorineural/diagnosis , Genetic Testing/methods
17.
J Comput Aided Mol Des ; 37(9): 453-461, 2023 09.
Article in English | MEDLINE | ID: mdl-37452977

ABSTRACT

African swine fever virus (ASFV), an extremely contagious virus with high mortality rates, causes severe hemorrhagic viral disease in both domestic and wild pigs. Fortunately, ASFV cannot be transmitted from pigs to humans. However, ongoing ASFV outbreaks could have severe economic consequences for global food security. Although ASFV was discovered several years ago, no vaccines or treatments are commercially available yet; therefore, the identification of new anti-ASFV drugs is urgently warranted. Using molecular docking and machine learning, we have previously identified pentagastrin, cangrelor, and fostamatinib as potential antiviral drugs against ASFV. Here, using machine learning combined with docking simulations, we identified natural products with a high affinity for AsfvPolX proteins. We selected five natural products (NPs) that are located close in chemical space to the six known natural flavonoids that possess anti-ASFV activity. Polygalic acid markedly reduced AsfvPolX polymerase activity in a dose-dependent manner. We propose an efficient protocol for identifying NPs as potential antiviral drugs by identifying chemical spaces containing high-affinity binders against ASFV in NP databases.


Subject(s)
African Swine Fever Virus , African Swine Fever , Humans , Swine , Animals , African Swine Fever/prevention & control , Molecular Docking Simulation , Viral Proteins , Antiviral Agents/pharmacology , In Vitro Techniques , Machine Learning
18.
Nano Lett ; 23(14): 6360-6368, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37409775

ABSTRACT

Vertical two-terminal synaptic devices based on resistive switching have shown great potential for emulating biological signal processing and implementing artificial intelligence learning circuitries. To mimic heterosynaptic behaviors in vertical two-terminal synaptic devices, an additional terminal is required for neuromodulator activity. However, adding an extra terminal, such as a gate of the field-effect transistor, may lead to low scalability. In this study, a vertical two-terminal Pt/bilayer Sr1.8Ag0.2Nb3O10 (SANO) nanosheet/Nb:SrTiO3 (Nb:STO) device emulates heterosynaptic plasticity by controlling the number of trap sites in the SANO nanosheet via modulation of the tunneling current. Similar to biological neuromodulation, we modulated the synaptic plasticity, pulsed pair facilitation, and cutoff frequency of a simple two-terminal device. Therefore, our synaptic device can add high-level learning such as associative learning to a neuromorphic system with a simple cross-bar array structure.

19.
J Control Release ; 359: 85-96, 2023 07.
Article in English | MEDLINE | ID: mdl-37230294

ABSTRACT

Immune checkpoint blockade (ICB) therapy has shown remarkable outcomes along with multiple cases of complete regression in clinical practice. But unfortunately, most patients who have an immunosuppressive tumor immune microenvironment (TIME) respond poorly to these therapies. To improve the response rate of the patients, various treatment modalities that can boost cancer immunogenicity and remove immune tolerance have been combined with ICB therapies. However, the systemic administration of multiple immunotherapeutic agents can potentially cause severe off-target toxicities and immune-related adverse events, diminishing antitumor immunity and increasing the risk of additional complications. To address these problems, Immune Checkpoint-Targeted Drug Conjugates (IDCs) have been widely investigated for their ability to offer distinct advantages in remodeling the TIME for cancer immunotherapy. IDCs, consisting of immune checkpoint-targeting moieties, cleavable linkers, and payloads of immunotherapeutic agents, have a similar structure to conventional antibody-drug conjugates (ADCs) but target and block the immune checkpoint receptors, and then release the payloads conjugated through cleavable linkers. These unique mechanisms of IDCs prompt an immune-responsive TIME by modulating the multiple steps related to the cancer-immunity cycle, ultimately leading to tumor eradication. This review outlines the mode of action and advantages of IDCs. In addition, various IDCs for combinational immunotherapy are reviewed. Finally, the potential and challenges of IDCs for clinical translation are discussed.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Immunologic Factors , Immunotherapy , Tumor Microenvironment
20.
Sensors (Basel) ; 23(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37177494

ABSTRACT

This paper describes a practical method for obtaining the spectra of lights emitted by a fluor in a liquid scintillator (LS) using a digital camera. The emission wavelength results obtained using a digital image were compared with those obtained using a fluorescence spectrophotometer. For general users, conventional spectrophotometers are expensive and difficult to access. Moreover, their experimental measurement setup and processes are highly complicated, and they require considerable care in handling. To overcome these limitations, a feasibility study was performed to obtain the emission spectrum through image analysis. Specifically, the emission spectrum of a fluor dissolved in a liquid scintillator was obtained using digital image analysis. An image processing method was employed to convert the light irradiated during camera exposure into wavelengths. Hue (H) and wavelength (W) are closely related. Thus, we obtained an H-W response curve in the 400~450 nm wavelength region, using a light-emitting diode. Another relevant advantage of the method described in this study is its non-invasiveness in sealed LS samples. Our results showed that this method has the potential to accurately investigate the emission wavelengths of fluor within acceptable uncertainties. We envision the use of this method to perform experiments in chemistry and physics laboratories in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...