Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Ginseng Res ; 47(5): 672-680, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37720568

ABSTRACT

Background: Korean Red Ginseng (KRG), the steamed root of Panax ginseng, has pharmacological activities for immunological and neurodegenerative disorders. But, the role of KRGE in multiple sclerosis (MS) remains unclear. Purpose: To determine whether KRG extract (KRGE) could inhibit demyelination in corpus callosum (CC) of cuprizone (CPZ)-induced murine model of MS. Methods: Male adult mice were fed with a standard chow diet or a chow diet supplemented with 0.2% (w/w) CPZ ad libitum for six weeks to induce demyelination while were simultaneously administered with distilled water (DW) alone or KRGE-DW (0.004%, 0.02 and 0.1% of KRGE) by drinking. Results: Administration with KRGE-DW alleviated demyelination and oligodendrocyte degeneration associated with inhibition of infiltration and activation of resident microglia and monocyte-derived macrophages as well as downregulation of proinflammatory mediators in the CC of CPZ-fed mice. KRGE-DW also attenuated the level of infiltration of Th1 and Th17) cells, in line with inhibited mRNA expression of IFN-γ and IL-17, respectively, in the CC. These positive effects of KRGE-DW mitigated behavioral dysfunction based on elevated plus maze and the rotarod tests. Conclusion: The results strongly suggest that KRGE-DW may inhibit CPZ-induced demyelination due to its oligodendroglial protective and anti-inflammatory activities by inhibiting infiltration/activation of immune cells. Thus, KRGE might have potential in therapeutic intervention for MS.

2.
J Ginseng Res ; 47(3): 390-399, 2023 May.
Article in English | MEDLINE | ID: mdl-37252272

ABSTRACT

Background: Gintonin (GT), a Panax ginseng-derived lysophosphatidic acid receptor (LPAR) ligand, has positive effects in cultured or animal models for Parkinson's disease, Huntington's disease, and so on. However, the potential therapeutic value of GT in treating epilepsy has not yet been reported. Methods: Effects of GT on epileptic seizure (seizure) in kainic acid [KA, 55mg/kg, intraperitoneal (i.p.)]-induced model of mice, excitotoxic (hippocampal) cell death in KA [0.2 µg, intracerebroventricular (i.c.v.)]-induced model of mice, and levels of proinflammatory mediators in lipopolysaccharide (LPS)-induced BV2 cells were investigated. Results: An i.p. injection of KA into mice produced typical seizure. However, it was significantly alleviated by oral administration of GT in a dose-dependent manner. An i.c.v. injection of KA produced typical hippocampal cell death, whereas it was significantly ameliorated by administration of GT, which was related to reduced levels of neuroglial (microglia and astrocyte) activation and proinflammatory cytokines/enzymes expression as well as increased level of the Nrf2-antioxidant response via the upregulation of LPAR 1/3 in the hippocampus. However, these positive effects of GT were neutralized by an i.p. injection of Ki16425, an antagonist of LPA1-3. GT also reduced protein expression level of inducible nitric-oxide synthase, a representative proinflammatory enzyme, in LPS-induced BV2 cells. Treatment with conditioned medium clearly reduced cultured HT-22 cell death. Conclusion: Taken together, these results suggest that GT may suppress KA-induced seizures and excitotoxic events in the hippocampus through its anti-inflammatory and antioxidant activities by activating LPA signaling. Thus, GT has a therapeutic potential to treat epilepsy.

3.
Cells ; 12(5)2023 03 02.
Article in English | MEDLINE | ID: mdl-36899922

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disease that affects the motor control system of the brain. Its pathological mechanism and therapeutic strategies have not been fully elucidated yet. The neuroprotective value of micrandilactone C (MC), a new schiartane nortriterpenoid isolated from the roots of Schisandra chinensis, is not well-known either. Here, the neuroprotective effects of MC were demonstrated in 3-nitropropionic acid (3-NPA)-treated animal and cell culture models of HD. MC mitigated neurological scores and lethality following 3-NPA treatment, which is associated with decreases in the formation of a lesion area, neuronal death/apoptosis, microglial migration/activation, and mRNA or protein expression of inflammatory mediators in the striatum. MC also inhibited the activation of the signal transducer and activator of transcription 3 (STAT3) in the striatum and microglia after 3-NPA treatment. As expected, decreases in inflammation and STAT3-activation were reproduced in a conditioned medium of lipopolysaccharide-stimulated BV2 cells pretreated with MC. The conditioned medium blocked the reduction in NeuN expression and the enhancement of mutant huntingtin expression in STHdhQ111/Q111 cells. Taken together, MC might alleviate behavioral dysfunction, striatal degeneration, and immune response by inhibiting microglial STAT3 signaling in animal and cell culture models for HD. Thus, MC may be a potential therapeutic strategy for HD.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Schisandra , Animals , Microglia/metabolism , Huntington Disease/metabolism , Neurodegenerative Diseases/metabolism , STAT3 Transcription Factor/metabolism , Culture Media, Conditioned/pharmacology
4.
Phytomedicine ; 112: 154569, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36842217

ABSTRACT

BACKGROUND: Bornyl acetate (BA), a chemical component of essential oil in the Pinus family, has yet to be actively studies in terms of its therapeutic effect on numerous diseases, including autoimmune diseases. PURPOSE: This study aimed to investigate the pharmacological effects and molecular mechanisms of BA on myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE) mice in an animal model of multiple sclerosis (MS), a representative autoimmune disease in central nervous system. METHODS: BA (100, 200, or 400 mg/kg) was orally treated to EAE mice once daily for 30 days after immunization for the behavioral test and for the 16th-18th days for the histopathological and molecular analyses, from the onset stage (8th day) of EAE symptoms. RESULTS: BA mitigated behavioral dysfunction (motor disability) and demyelination in the spinal cord that were associated with the down-regulation of representative pro-inflammatory cytokines (interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha), enzymes (cyclooxygenase-2 and inducible nitric oxide synthase), and chemokines (monocyte chemotactic protein-1, macrophage inflammatory protein-1 alpha, and regulated on activation), and decreased infiltration of microglia (CD11b+/CD45+(low)) and macrophages (CD11b+/CD45+(high)). The anti-inflammatory effect of BA was related to the inhibition of mitogen-activated protein kinases and nuclear factor-kappa B pathways. BA also reduced the recruitment/infiltration rates of CD4+ T, Th1, and Th17 cells into the spinal cords of EAE mice, which was related to reduced blood-spinal cord barrier (BSCB) disruption. CONCLUSION: These findings strongly suggest that BA may alleviate EAE due to its anti-inflammatory and BSCB protective activities. This indicates that BA is a potential therapeutic agent for treating autoimmune demyelinating diseases including MS.


Subject(s)
Disabled Persons , Encephalomyelitis, Autoimmune, Experimental , Motor Disorders , Multiple Sclerosis , Neuroprotective Agents , Mice , Animals , Humans , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Blood-Brain Barrier , Motor Disorders/complications , Motor Disorders/drug therapy , Motor Disorders/pathology , Multiple Sclerosis/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
5.
Molecules ; 27(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36500231

ABSTRACT

Oxaliplatin-induced peripheral neuropathy (OIPN) is a serious side effect that impairs the quality of life of patients treated with the chemotherapeutic agent, oxaliplatin. The underlying pathophysiology of OIPN remains unclear, and there are no effective therapeutics. This study aimed to investigate the causal relationship between spinal microglial activation and OIPN and explore the analgesic effects of syringaresinol, a phytochemical from the bark of Cinnamomum cassia, on OIPN symptoms. The causality between microglial activation and OIPN was investigated by assessing cold and mechanical allodynia in mice after intrathecal injection of the serum supernatant from a BV-2 microglial cell line treated with oxaliplatin. The microglial inflammatory response was measured based on inducible nitric oxide synthase (iNOS), phosphorylated extracellular signal-regulated kinase (p-ERK), and phosphorylated nuclear factor-kappa B (p-NF-κB) expression in the spinal dorsal horn. The effects of syringaresinol were tested using behavioral and immunohistochemical assays. We found that oxaliplatin treatment activated the microglia to increase inflammatory responses, leading to the induction of pain. Syringaresinol treatment significantly ameliorated oxaliplatin-induced pain and suppressed microglial expression of inflammatory signaling molecules. Thus, we concluded that the analgesic effects of syringaresinol on OIPN were achieved via the modulation of spinal microglial inflammatory responses.


Subject(s)
Microglia , Neuralgia , Mice , Animals , Oxaliplatin/pharmacology , Quality of Life , Disease Models, Animal , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/metabolism , Spinal Cord
6.
Medicine (Baltimore) ; 101(45): e31718, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36397418

ABSTRACT

RATIONALE: Neurofibromatosis type 1 (NF-1) can manifest with various neurological symptoms. However, sensory ataxia has not been reported. PATIENT CONCERNS: A 44-year-old man with NF-1 presented with several weeks of unsteady gait. He was diagnosed with gastric neuroendocrine tumor with multiple hepatic metastases 6 years ago and received palliative chemotherapy. Neurological examination revealed ataxia veering to the right side with no motor weakness. DIAGNOSES: Clinical manifestations and electrodiagnostic studies suggested the dysfunction of the thoracic dorsal column (DC). Initial magnetic resonance imaging showed a lateral thoracic meningocele (LTM) located in the right paravertebral area at the T3-T4 vertebral level, but the spinal cord was unremarkable. Gait disturbance worsened after 9 months, and follow-up magnetic resonance imaging showed high signal intensity involving the right DC at the level adjacent to the LTM and spinal cord atrophy distal to the DC lesion. Tests for well-characterized paraneoplastic antibodies were negative. Ultimately, the patient was assumed to have sensory neuronopathy due to compressive damage to the dorsal root ganglia within the intervertebral foramina by LTM. INTERVENTIONS: Empirical treatment with vitamin B12 supplementation and corticosteroids failed to improve his condition. The patient underwent decompressive laminectomy and excision of the meningocele with dura repair. OUTCOMES: The patient temporarily improved to walk with assistance postoperatively. However, he developed dyspnea and hypotension 5 weeks later. Carcinoid heart disease confined the patient to the bed. The patient died of pneumonia 3 months after the operation. LESSONS: This case with NF-1 shows asymmetric sensory ataxia of subacute progression. LTM may contribute to the development of sensory neuronopathy by damaging sensory neurons of the dorsal root ganglia. The comorbidities of the patient, including gastric neuroendocrine tumor and LTM, made it challenging to investigate the pathomechanism.


Subject(s)
Meningocele , Neuroendocrine Tumors , Neurofibromatosis 1 , Male , Humans , Adult , Neurofibromatosis 1/complications , Neurofibromatosis 1/diagnosis , Spinal Cord , Ataxia
7.
J Ginseng Res ; 46(3): 337-347, 2022 May.
Article in English | MEDLINE | ID: mdl-35233163

ABSTRACT

Coronavirus disease 2019 (COVID-19) is currently a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 are directly associated with hyper-activation of innate immune response that excessively produce pro-inflammatory cytokines and induce cytokine storm, leading to multi-organ-failure and significant morbidity/mortality. Currently, several antiviral drugs such as Paxlovid (nirmatrelvir and ritonavir) and molnupiravir are authorized to treat mild to moderate COVID-19, however, there are still no drugs that can specifically fight against challenges of SARS-CoV-2 variants. Panax ginseng, a medicinal plant widely used for treating various conditions, might be appropriate for this need due to its anti-inflammatory/cytokine/viral activities, fewer side effects, and cost efficiency. To review Panax ginseng and its pharmacologically active-ingredients as potential phytopharmaceuticals for treating cytokine storm of COVID-19, articles that reporting its positive effects on the cytokine production were searched from academic databases. Experimental/clinical evidences for the effectiveness of Panax ginseng and its active-ingredients in preventing or mitigating cytokine storm, especially for the cascade of cytokine storm, suggest that they might be beneficial as an adjunct treatment for cytokine storm of COVID-19. This review may provide a new approach to discover specific medications using Panax ginseng to control cytokine storm of COVID-19.

8.
J Neuroinflammation ; 18(1): 240, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34666785

ABSTRACT

BACKGROUND: Lysophosphatidic acid receptors (LPARs) are G-protein-coupled receptors involved in many physiological functions in the central nervous system. However, the role of the LPARs in multiple sclerosis (MS) has not been clearly defined yet. METHODS: Here, we investigated the roles of LPARs in myelin oligodendrocyte glycoprotein peptides-induced experimental autoimmune encephalomyelitis (EAE), an animal model of MS. RESULTS: Pre-inhibition with LPAR1-3 antagonist Ki16425 deteriorated motor disability of EAElow. Specifically, LPAR1-3 antagonist (intraperitoneal) deteriorated symptoms of EAElow associated with increased demyelination, chemokine expression, cellular infiltration, and immune cell activation (microglia and macrophage) in spinal cords of mice compared to the sham group. This LPAR1-3 antagonist also increased the infiltration of CD4+/IFN-γ+ (Th1) and CD4+/IL-17+ (Th17) cells into spinal cords of EAElow mice along with upregulated mRNA expression of IFN-γ and IL-17 and impaired blood-brain barrier (BBB) in the spinal cord. The underlying mechanism for negative effects of LPAR1-3 antagonist was associated with the overproduction of reactive oxygen species (ROS)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) 2 and NOX3. Interestingly, LPAR1/2 agonist 1-oleoyl-LPA (LPA 18:1) (intraperitoneal) ameliorated symptoms of EAEhigh and improved representative pathological features of spinal cords of EAEhigh mice. CONCLUSIONS: Our findings strongly suggest that some agents that can stimulate LPARs might have potential therapeutic implications for autoimmune demyelinating diseases such as MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Isoxazoles/toxicity , Oxidative Stress/physiology , Propionates/toxicity , Receptors, Lysophosphatidic Acid/metabolism , Animals , Dose-Response Relationship, Drug , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Female , Isoxazoles/pharmacology , Mice , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein/toxicity , Oxidative Stress/drug effects , Peptide Fragments/toxicity , Propionates/pharmacology , Receptors, Lysophosphatidic Acid/antagonists & inhibitors
9.
J Ginseng Res ; 45(3): 390-400, 2021 May.
Article in English | MEDLINE | ID: mdl-34025132

ABSTRACT

BACKGROUND: We recently showed that gintonin, an active ginseng ingredient, exhibits antibrain neurodegenerative disease effects including multiple target mechanisms such as antioxidative stress and antiinflammation via the lysophosphatidic acid (LPA) receptors. Amyotrophic lateral sclerosis (ALS) is a spinal disease characterized by neurodegenerative changes in motor neurons with subsequent skeletal muscle paralysis and death. However, pathophysiological mechanisms of ALS are still elusive, and therapeutic drugs have not yet been developed. We investigate the putative alleviating effects of gintonin in ALS. METHODS: The G93A-SOD1 transgenic mouse ALS model was used. Gintonin (50 or 100 mg/kg/day, p.o.) administration started from week seven. We performed histological analyses, immunoblot assays, and behavioral tests. RESULTS: Gintonin extended mouse survival and relieved motor dysfunctions. Histological analyses of spinal cords revealed that gintonin increased the survival of motor neurons, expression of brain-derived neurotrophic factors, choline acetyltransferase, NeuN, and Nissl bodies compared with the vehicle control. Gintonin attenuated elevated spinal NAD(P) quinone oxidoreductase 1 expression and decreased oxidative stress-related ferritin, ionized calcium-binding adapter molecule 1-immunoreactive microglia, S100ß-immunoreactive astrocyte, and Olig2-immunoreactive oligodendrocytes compared with the control vehicle. Interestingly, we found that the spinal LPA1 receptor level was decreased, whereas gintonin treatment restored decreased LPA1 receptor expression levels in the G93A-SOD1 transgenic mouse, thereby attenuating neurological symptoms and histological deficits. CONCLUSION: Gintonin-mediated symptomatic improvements of ALS might be associated with the attenuations of neuronal loss and oxidative stress via the spinal LPA1 receptor regulations. The present results suggest that the spinal LPA1 receptor is engaged in ALS, and gintonin may be useful for relieving ALS symptoms.

10.
J Ginseng Res ; 45(3): 433-441, 2021 May.
Article in English | MEDLINE | ID: mdl-34025136

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE), are primarily characterized as dysfunction of the blood-brain barrier (BBB). Ginsenoside-Rg3-enriched Korean Red Ginseng extract (Rg3-KRGE) is known to exert neuroprotective, anti-inflammatory, and anti-oxidative effects on neurological disorders. However, effects of Rg3-KRGE in EAE remain unclear. METHODS: Here, we investigated whether Rg3-KRGE may improve the symptoms and pathological features of myelin oligodendroglial glycoprotein (MOG)35-55 peptide - induced chronic EAE mice through improving the integrity of the BBB. RESULTS: Rg3-KRGE decreased EAE score and spinal demyelination. Rg3-KRGE inhibited Evan's blue dye leakage in spinal cord, suppressed increases of adhesion molecule platelet endothelial cell adhesion molecule-1, extracellular matrix proteins fibronection, and matrix metallopeptidase-9, and prevented decreases of tight junction proteins zonula occludens-1, claudin-3, and claudin-5 in spinal cord following EAE induction. Rg3-KRGE repressed increases of proinflammatory transcripts cyclooxygenase-2, inducible nitric oxide synthase, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, but enhanced expression levels of anti-inflammatory transcripts arginase-1 and IL-10 in the spinal cord following EAE induction. Rg3-KRGE inhibited the expression of oxidative stress markers (MitoSOX and 4-hydroxynonenal), the enhancement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and NOX4, and NADPH activity in the spinal cord of chronic EAE mice. Furthermore, apocynin, a NOX inhibitor, mimicked beneficial effects of Rg3-KRGE in chronic EAE mice. CONCLUSION: Our findings suggest that Rg3-KRGE might alleviate behavioral symptoms and pathological features of MS by improving BBB integrity through modulation of NOX2/4 expression.

11.
Exp Ther Med ; 21(4): 310, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33717253

ABSTRACT

It has been previously indicated that gintonin, which is a novel exogenous ginseng-derived lysophosphatidic acid (LPA) receptor ligand, restores memory dysfunctions in an APPswe/PSEN-1 double-transgenic mouse model of Alzheimer's disease (AD Tg mice) by attenuating ß-amyloid plaque deposition, recovering cholinergic dysfunctions and upregulating hippocampal neurogenesis in the cortex and hippocampus. Although ß-amyloid plaque depositions in AD is accompanied with disruptions of brain microvessels, including the brain-blood barrier (BBB), it is unknown whether gintonin exerts protective effects on brain microvascular dysfunctions in AD Tg mice. In the present study, the effects of gintonin-enriched fraction (GEF) on the changes in ß-amyloid plaque depositions, brain permeability of Evans blue, and microvascular junctional proteins were investigated in AD Tg mice. Long-term oral administration of GEF reduced ß-amyloid plaque depositions in the cortex and hippocampus of AD Tg mice. GEF treatment also reduced the permeability of Evans blue through BBB and decreased immunoreactivity of platelet endothelial cell adhesion molecule-1 (a marker of BBB disruption) in the cortex and hippocampus of AD Tg mice in a dose-dependent manner. However, GEF elevated the protein expression of occludin, claudin-5 and zonula occludens-1, which are tight-junction proteins. The present results demonstrated that long-term oral GEF treatment not only attenuates ß-amyloid plaque depositions in the brain but also exhibits protective effects against microvascular disruptions in AD Tg mice. Finally, GEF exhibits anti-AD effects through attenuation of ß-amyloid plaque depositions and protection against brain microvascular damage in an AD animal model.

12.
Brain Behav Immun ; 93: 384-398, 2021 03.
Article in English | MEDLINE | ID: mdl-33309911

ABSTRACT

Gintonin (GT), a glycolipoprotein fraction isolated from ginseng, exerts neuroprotective effects in models of neurodegenerative diseases such as Alzheimer's disease. However, the in vivo role of GT in multiple sclerosis (MS) has not been clearly resolved. We investigated the effect of GT in myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE), an animal model of MS. GT alleviated behavioral symptoms of EAE associated with reduced demyelination, diminished infiltration and activation of immune cells (microglia and macrophage), and decreased expression of inflammatory mediators in the spinal cord of the EAE group compared to that of the sham group. GT reduced the percentages of CD4+/IFN-γ+ (Th1) and CD4+/IL-17+ (Th17) cells but increased the population of CD4+/CD25+/Foxp3+ (Treg) cells in the spinal cord, in agreement with altered mRNA expression of IFN-γ, IL-17, and TGF-ß in the spinal cord in concordance with mitigated blood-brain barrier disruption. The underlying mechanism is related to inhibition of the ERK and p38 mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways and the stabilization of nuclear factor erythroid 2-related factor 2 (Nrf2) via increased expression of lysophosphatidic acid receptor (LPAR) 1-3. Impressively, these beneficial effects of GT were completely neutralized by inhibiting LPARs with Ki16425, a LPAR1/3 antagonist. Our results strongly suggest that GT may be able to alleviate EAE due to its anti-inflammatory and antioxidant activities through LPARs. Therefore, GT is a potential therapeutic option for treating autoimmune disorders including MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Animals , Cytokines , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Mice , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein , NF-E2-Related Factor 2 , Plant Extracts , Receptors, Lysophosphatidic Acid , Spinal Cord
13.
J Ginseng Res ; 44(6): 790-798, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33192122

ABSTRACT

BACKGROUND: Beneficial effects of Korean Red Ginseng (KRG) on polycystic ovarian syndrome (PCOS) remains unclear. METHODS: We examined whether pretreatment (daily from 2 hours before PCOS induction) with KRG extract in water (KRGE; 75 and 150 mg/kg/day, p.o.) could exert a favorable effect in a dehydroepiandrosterone (DHEA)-induced PCOS rat model. RESULTS: Pretreatment with KRGE significantly inhibited the elevation of body and ovary weights, the increase in number and size of ovarian cysts, and the elevation of serum testosterone and estradiol levels induced by DHEA. Pretreatment with KRGE also inhibited macrophage infiltration and enhanced mRNA expression levels of chemokines [interleukin (IL)-8, monocyte chemoattractant protein-1), proinflammatory cytokines (IL-1ß, IL-6), and inducible nitric oxide synthase in ovaries induced by DHEA. It also prevented the reduction in mRNA expression of growth factors (epidermal growth factor, transforming growth factor-beta (EGF, TGF-ß)) related to inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell pathway and stimulation of the nuclear factor erythroid-derived 2-related factor 2 pathway. Interestingly, KRGE or representative ginsenosides (Rb1, Rg1, and Rg3(s)) inhibited the activity of inflammatory enzymes cyclooxygenase-2 and iNOS, cytosolic p-IkB, and nuclear p-nuclear factor kappa-light-chain-enhancer of activated B in lipopolysaccharide-induced RAW264.7 cells, whereas they increased nuclear factor erythroid-derived 2-related factor 2 nuclear translocation. CONCLUSION: These results provide that KRGE could prevent DHEA-induced PCOS via antiinflammatory and antioxidant activities. Thus, KRGE may be used in preventive and therapeutic strategies for PCOS-like symptoms.

14.
J Ginseng Res ; 44(1): 168-177, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32095099

ABSTRACT

BACKGROUND: Ginseng has been widely used as a health-promoting tonic. Gintonin present in ginseng acts as a lysophosphatidic acid (LPA) receptor ligand that activates six LPA receptor subtypes. The LPA6 subtype plays a key role in normal hair growth, and mutations in the LPA6 receptor impair normal human hair growth. Currently, human hair loss and alopecia are concerning issues that affect peoples' social and day-to-day lives. OBJECTIVE: We investigated the in vitro and in vivo effects of a gintonin-enriched fraction (GEF) on mouse hair growth. METHODS: Human hair follicle dermal papilla cells (HFDPCs) and six-week-old male C57BL/6 mice were used. The mice were divided into the four groups: control, 1% minoxidil, 0.75% GEF, and 1.5% GEF. The dorsal hair was removed to synchronize the telogen phase. Each group was treated topically, once a day, for 15 days. We analyzed hair growth activity and histological changes. RESULTS: GEF induced transient [Ca2+]i, which stimulated HFDPC proliferation and caused 5-bromo-2'-deoxyuridine (BrdU) incorporation in a concentration-dependent manner. GEF-mediated HFDPC proliferation was blocked by the LPA receptor antagonist and Ca2+ chelator. HFDPC treatment with GEF stimulated vascular endothelial growth factor release. Topical application of GEF and minoxidil promoted hair growth in a dose-dependent manner. Histological analysis showed that GEF and minoxidil increased the number of hair follicles and hair weight. CONCLUSION: Topical application of GEF promotes mouse hair growth through HFDPC proliferation. GEF could be one of the main components of ginseng that promote hair growth and could be used to treat human alopecia.

15.
Rejuvenation Res ; 23(3): 245-255, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31452446

ABSTRACT

Although depression is the most common psychiatric disorder, its pharmacological properties are not well known yet. It has been reported that Valeriana fauriei (VF) extract is beneficial for several neurological diseases. However, little information is available regarding its antidepressant activity. Therefore, the objective of this study was to determine antidepressant activity of VF and the underlying mechanism involved in its effect on chronic restraint stress (CRS)-induced depression using a mouse model. Oral treatment of VF extract for 14 days significantly ameliorated depression-like behavior (immobility time) in forced swimming and tail suspension tests following CRS induction, in accordance with decreased levels of serum corticosterone. VF extract ameliorated c-Fos expression, microglial activation, phosphorylated p38 expression, and inflammatory response (protein expression levels of cyclooxygenase-2 and inducible nitric oxide) in the prefrontal cortex, hippocampus, and amygdala of mice after CRS induction. However, VF extract enhanced the stimulation of nuclear factor erythroid 2-related factor 2 pathways, in accordance with upregulation in protein expression of brain-derived neurotrophic factor (BDNF). Collectively, our findings demonstrate that VF extract has antidepressant-like activity against CRS-induced depression through its anti-inflammatory and antioxidant effects by inhibiting BDNF expression. Further studies are warranted to investigate VF extract's fraction and components to develop possible antidepressants.


Subject(s)
Brain-Derived Neurotrophic Factor/antagonists & inhibitors , Depression/drug therapy , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Restraint, Physical/psychology , Valerian/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Chronic Disease , Depression/metabolism , Depression/psychology , Disease Models, Animal , Hindlimb Suspension , Male , Mice , Mice, Inbred C57BL , Plant Extracts/therapeutic use , Restraint, Physical/adverse effects , Stress, Psychological/drug therapy , Stress, Psychological/psychology
16.
Brain Behav Immun ; 80: 146-162, 2019 08.
Article in English | MEDLINE | ID: mdl-30853569

ABSTRACT

Gintonin (GT), a ginseng-derived lysophosphatidic acid receptor ligand, regulates various cellular effects and represses inflammation. However, little is known about the potential value of GT regarding inflammation in the neurodegenerative diseases, such as Huntington's disease (HD). In this study, we investigated whether GT could ameliorate the neurological impairment and striatal toxicity in cellular or animal model of HD. Pre-, co-, and onset-treatment with GT (25, 50, or 100 mg/kg/day, p.o.) alleviated the severity of neurological impairment and lethality following 3-nitropropionic acid (3-NPA). Pretreatment with GT also attenuated mitochondrial dysfunction i.e. succinate dehydrogenase and MitoSOX activities, apoptosis, microglial activation, and mRNA expression of inflammatory mediators i.e. IL-1ß, IL-6, TNF-α, COX-2, and iNOS in the striatum after 3-NPA-intoxication. Its action mechanism was associated with lysophosphatidic acid receptors (LPARs) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway activations and the inhibition of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signaling pathways. These beneficial effects of GT were neutralized by pre-inhibiting LPARs with Ki16425 (a LPAR1/3 antagonist). Interestingly, GT reduced cell death and mutant huntingtin (HTT) aggregates in STHdh cells. It also mitigated neurological impairment in mice with adeno-associated viral (AAV) vector serotype DJ-mediated overexpression of N171-82Q-mutant HTT in the striatum. Taken together, our findings firstly suggested that GT has beneficial effects with a wide therapeutic time-window in 3-NPA-induced striatal toxicity by antioxidant and anti-inflammatory activities through LPA. In addition, GT exerts neuroprotective effects in STHdh cells and AAV vector-infected model of HD. Thus GT might be an innovative therapeutic candidate to treat HD-like syndromes.


Subject(s)
NF-E2-Related Factor 2/metabolism , Plant Extracts/pharmacology , Receptors, Lysophosphatidic Acid/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Cell Death/drug effects , Corpus Striatum/immunology , Corpus Striatum/metabolism , Disease Models, Animal , Huntington Disease/drug therapy , Huntington Disease/genetics , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Neurons/metabolism , Neuroprotective Agents/pharmacology , Panax , Plant Extracts/metabolism , Receptors, Lysophosphatidic Acid/drug effects , Receptors, Lysophosphatidic Acid/physiology , Signal Transduction/drug effects
17.
Article in English | MEDLINE | ID: mdl-30564195

ABSTRACT

Complete animal models investigating the pathogenesis and treatment of polycystic ovarian syndrome (PCOS) are not completely established. Although dehydroepiandrosterone (DHEA)-induced pre-pubertal rat model for PCOS has been widely used, the model exhibits weaknesses such as decreased ovary weight. Here, we report an innovative DHEA-induced PCOS model that addresses limitations of the pre-pubertal model. The 21-day-old (pre-pubertal) and 42-day-old (post-pubertal) female rats were subcutaneously injected with DHEA (60 mg/kg body weight) daily for up to 20-30 days. The post-pubertal model showed a steady increase in ovary weight and the number of ovarian cysts as well as uterine weight and thickness, which may be key features of PCOS, compared with the pre-pubertal model. Therefore, a post-pubertal PCOS model induced by DHEA may be an improved model to investigate the etiology of PCOS and development of therapeutic interventions.

18.
J Ginseng Res ; 42(3): 379-388, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29983619

ABSTRACT

BACKGROUND: Ginsenosides are the main ingredients of Korean Red Ginseng. They have extensively been studied for their beneficial value in neurodegenerative diseases such as Parkinson's disease (PD). However, the multitarget effects of Korean Red Ginseng extract (KRGE) with various components are unclear. METHODS: We investigated the multitarget activities of KRGE on neurological dysfunction and neurotoxicity in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. KRGE (37.5 mg/kg/day, 75 mg/kg/day, or 150 mg/kg/day, per os (p.o.)) was given daily before or after MPTP intoxication. RESULTS: Pretreatment with 150 mg/kg/day KRGE produced the greatest positive effect on motor dysfunction as assessed using rotarod, pole, and nesting tests, and on the survival rate. KRGE displayed a wide therapeutic time window. These effects were related to reductions in the loss of tyrosine hydroxylase-immunoreactive dopaminergic neurons, apoptosis, microglial activation, and activation of inflammatory factors in the substantia nigra pars compacta and/or striatum after MPTP intoxication. In addition, pretreatment with KRGE activated the nuclear factor erythroid 2-related factor 2 pathways and inhibited phosphorylation of the mitogen-activated protein kinases and nuclear factor-kappa B signaling pathways, as well as blocked the alteration of blood-brain barrier integrity. CONCLUSION: These results suggest that KRGE may effectively reduce MPTP-induced neurotoxicity with a wide therapeutic time window through multitarget effects including antiapoptosis, antiinflammation, antioxidant, and maintenance of blood-brain barrier integrity. KRGE has potential as a multitarget drug or functional food for safe preventive and therapeutic strategies for PD.

19.
Front Pharmacol ; 9: 515, 2018.
Article in English | MEDLINE | ID: mdl-29875659

ABSTRACT

Gintonin is a ginseng-derived lysophosphatidic acid receptor (LPAR) ligand. Although previous in vitro and in vivo studies demonstrated the therapeutic role of gintonin against Alzheimer's disease, the neuroprotective effects of gintonin in Parkinson's disease (PD) are still unknown. We investigated whether gintonin (50 and 100 mg/kg/day, p.o., daily for 12 days) had neuroprotective activities against neurotoxicity in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Pre-administration of 100 mg/kg gintonin displayed significantly ameliorating effects in neurological disorders (motor and welfare) as measuring using pole, rotarod, and nest building tests, and in the survival rate. These effects were associated to the reduction of the loss of tyrosine hydroxylase-positive neurons, microglial activation, activation of inflammatory mediators (interleukin-6, tumor necrosis factor, and cyclooxygenase-2), and alteration of blood-brain barrier (BBB) integrity in the substantia nigra pars compacta and/or striatum following MPTP injection. The benefits of gintonin treatment against MPTP also included the activation of the nuclear factor erythroid 2-related factor 2 pathways and the inhibition of phosphorylation of the mitogen-activated protein kinases and nuclear factor-kappa B signaling pathways. Interestingly, these neuroprotective effects of gintonin were blocked by LPAR1/3 antagonist, Ki16425. Overall, the present study shows that gintonin attenuates MPTP-induced neurotoxicity via multiple targets. Gintonin combats neuronal death, and acts as an anti-inflammatory and an anti-oxidant agent. It maintains BBB integrity. LPA receptors play a key role in gintonin-mediated anti-PD mechanisms. Finally, gintonin is a key agent for prevention and/or treatment of PD.

20.
J Ginseng Res ; 42(1): 107-115, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29348729

ABSTRACT

BACKGROUND: Depression is one of the most commonly diagnosed neuropsychiatric diseases, but the underlying mechanism and medicine are not well-known. Although Panax ginseng has been reported to exert protective effects in various neurological studies, little information is available regarding its antidepressant effects. METHODS: Here, we examined the antidepressant effect and underlying mechanism of P. ginseng extract (PGE) in a chronic restraint stress (CRS)-induced depression model in mice. RESULTS: Oral administration of PGE for 14 d decreased immobility (depression-like behaviors) time in forced swim and tail suspended tests after CRS induction, which corresponded with attenuation of the levels of serum adrenocorticotropic hormone and corticosterone, as well as attenuated c-Fos expression in the amygdala. PGE enhanced messenger RNA expression level of brain-derived neurotrophic factor but ameliorated microglial activation and neuroinflammation (the level of messenger RNA and protein expression of cyclooxygenase-2 and inducible nitric oxide synthase) in the amygdala of mice after CRS induction. Interestingly, 14-d treatment with celecoxib, a selective cyclooxygenase-2 inhibitor, and Nω-nitro-L-arginine methyl ester hydrochloride, a selective inducible nitric oxide synthase inhibitor, attenuated depression-like behaviors after CRS induction. Additionally, PGE inhibited the upregulation of the nuclear factor erythroid 2 related factor 2 and heme oxygenase-1 pathways. CONCLUSION: Taken together, our findings suggest that PGE exerts antidepressant-like effect of CRS-induced depression by antineuroinflammatory and antioxidant (nuclear factor erythroid 2 related factor 2/heme oxygenase-1 activation) activities by inhibiting the hypothalamo-pituitary-adrenal axis mechanism. Further studies are needed to evaluate the potential of components of P. ginseng as an alternative treatment of depression, including clinical trial evaluation.

SELECTION OF CITATIONS
SEARCH DETAIL
...