Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38605641

ABSTRACT

Simulation of RNA-seq reads is critical in the assessment, comparison, benchmarking and development of bioinformatics tools. Yet the field of RNA-seq simulators has progressed little in the last decade. To address this need we have developed BEERS2, which combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline. BEERS2 takes input transcripts (typically fully length messenger RNA transcripts with polyA tails) from either customizable input or from CAMPAREE simulated RNA samples. It produces realistic reads of these transcripts as FASTQ, SAM or BAM formats with the SAM or BAM formats containing the true alignment to the reference genome. It also produces true transcript-level quantification values. BEERS2 combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline and is designed to include the effects of polyA selection and RiboZero for ribosomal depletion, hexamer priming sequence biases, GC-content biases in polymerase chain reaction (PCR) amplification, barcode read errors and errors during PCR amplification. These characteristics combine to make BEERS2 the most complete simulation of RNA-seq to date. Finally, we demonstrate the use of BEERS2 by measuring the effect of several settings on the popular Salmon pseudoalignment algorithm.


Subject(s)
Genome , RNA , RNA-Seq , Sequence Analysis, RNA , Computer Simulation , RNA/genetics , High-Throughput Nucleotide Sequencing
2.
bioRxiv ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37162982

ABSTRACT

Simulation of RNA-seq reads is critical in the assessment, comparison, benchmarking, and development of bioinformatics tools. Yet the field of RNA-seq simulators has progressed little in the last decade. To address this need we have developed BEERS2, which combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline. BEERS2 takes input transcripts (typically fully-length mRNA transcripts with polyA tails) from either customizable input or from CAMPAREE simulated RNA samples. It produces realistic reads of these transcripts as FASTQ, SAM, or BAM formats with the SAM or BAM formats containing the true alignment to the reference genome. It also produces true transcript-level quantification values. BEERS2 combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline and is designed to include the effects of polyA selection and RiboZero for ribosomal depletion, hexamer priming sequence biases, GC-content biases in PCR amplification, barcode read errors, and errors during PCR amplification. These characteristics combine to make BEERS2 the most complete simulation of RNA-seq to date. Finally, we demonstrate the use of BEERS2 by measuring the effect of several settings on the popular Salmon pseudoalignment algorithm.

4.
Cell Rep ; 38(8): 110417, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35196489

ABSTRACT

Androgen receptor (AR) signaling is the central driver of prostate cancer across disease states. While androgen deprivation therapy (ADT) is effective in the initial treatment of prostate cancer, resistance to ADT or to next-generation androgen pathway inhibitors invariably arises, most commonly through the re-activation of the AR axis. Thus, orthogonal approaches to inhibit AR signaling in advanced prostate cancer are essential. Here, via genome-scale CRISPR-Cas9 screening, we identify protein arginine methyltransferase 1 (PRMT1) as a critical mediator of AR expression and signaling. PRMT1 regulates the recruitment of AR to genomic target sites and the inhibition of PRMT1 impairs AR binding at lineage-specific enhancers, leading to decreased expression of key oncogenes, including AR itself. In addition, AR-driven prostate cancer cells are uniquely susceptible to combined AR and PRMT1 inhibition. Our findings implicate PRMT1 as a key regulator of AR output and provide a preclinical framework for co-targeting of AR and PRMT1 in advanced prostate cancer.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Male , Prostate/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Repressor Proteins/metabolism , Signal Transduction
5.
Nat Commun ; 12(1): 7139, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880227

ABSTRACT

Amplification and overexpression of the SOX2 oncogene represent a hallmark of squamous cancers originating from diverse tissue types. Here, we find that squamous cancers selectively amplify a 3' noncoding region together with SOX2, which harbors squamous cancer-specific chromatin accessible regions. We identify a single enhancer e1 that predominantly drives SOX2 expression. Repression of e1 in SOX2-high cells causes collapse of the surrounding enhancers, remarkable reduction in SOX2 expression, and a global transcriptional change reminiscent of SOX2 knockout. The e1 enhancer is driven by a combination of transcription factors including SOX2 itself and the AP-1 complex, which facilitates recruitment of the co-activator BRD4. CRISPR-mediated activation of e1 in SOX2-low cells is sufficient to rebuild the e1-SOX2 loop and activate SOX2 expression. Our study shows that squamous cancers selectively amplify a predominant enhancer to drive SOX2 overexpression, uncovering functional links among enhancer activation, chromatin looping, and lineage-specific copy number amplifications of oncogenes.


Subject(s)
Carcinoma, Squamous Cell/genetics , Gene Expression Regulation, Neoplastic , Neoplasms, Squamous Cell/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , CRISPR-Cas Systems , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Chromatin , Enhancer Elements, Genetic , Epigenomics , Female , Gene Knockout Techniques , Heterografts , Humans , Oncogenes/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
6.
J Clin Invest ; 131(18)2021 09 15.
Article in English | MEDLINE | ID: mdl-34523614

ABSTRACT

Herculean efforts by the Wellcome Sanger Institute, the National Cancer Institute, and the National Human Genome Research Institute to sequence thousands of tumors representing all major cancer types have yielded more than 700 genes that contribute to neoplastic growth when mutated, amplified, or deleted. While some of these genes (now included in the COSMIC Cancer Gene Census) encode proteins previously identified in hypothesis-driven experiments (oncogenic transcription factors, protein kinases, etc.), additional classes of cancer drivers have emerged, perhaps none more surprisingly than RNA-binding proteins (RBPs). Over 40 RBPs responsible for virtually all aspects of RNA metabolism, from synthesis to degradation, are recurrently mutated in cancer, and just over a dozen are considered major cancer drivers. This Review investigates whether and how their RNA-binding activities pertain to their oncogenic functions. Focusing on several well-characterized steps in RNA metabolism, we demonstrate that for virtually all cancer-driving RBPs, RNA processing activities are either abolished (the loss-of-function phenotype) or carried out with low fidelity (the LoFi phenotype). Conceptually, this suggests that in normal cells, RBPs act as gatekeepers maintaining proper RNA metabolism and the "balanced" proteome. From the practical standpoint, at least some LoFi phenotypes create therapeutic vulnerabilities, which are beginning to be exploited in the clinic.


Subject(s)
Mutation , Neoplasms/genetics , Neoplasms/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Active Transport, Cell Nucleus , Databases, Genetic , Humans , Metabolic Networks and Pathways/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Biological , Mutant Proteins/genetics , Mutant Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phenotype , Protein Biosynthesis , RNA Processing, Post-Transcriptional , RNA Splicing/genetics , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Transcription, Genetic
7.
Cancer Res ; 80(24): 5464-5477, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33115806

ABSTRACT

Activation of transcription factors is a key driver event in cancer. We and others have recently reported that the Krüppel-like transcription factor KLF5 is activated in multiple epithelial cancer types including squamous cancer and gastrointestinal adenocarcinoma, yet the functional consequences and the underlying mechanisms of this activation remain largely unknown. Here we demonstrate that activation of KLF5 results in strongly selective KLF5 dependency for these cancer types. KLF5 bound lineage-specific regulatory elements and activated gene expression programs essential to cancer cells. HiChIP analysis revealed that multiple distal KLF5 binding events cluster and synergize to activate individual target genes. Immunoprecipitation-mass spectrometry assays showed that KLF5 interacts with other transcription factors such as TP63 and YAP1, as well as the CBP/EP300 acetyltransferase complex. Furthermore, KLF5 guided the CBP/EP300 complex to increase acetylation of H3K27, which in turn enhanced recruitment of the bromodomain protein BRD4 to chromatin. The 3D chromatin architecture aggregated KLF5-dependent BRD4 binding to activate polymerase II elongation at KLF5 target genes, which conferred a transcriptional vulnerability to proteolysis-targeting chimera-induced degradation of BRD4. Our study demonstrates that KLF5 plays an essential role in multiple epithelial cancers by activating cancer-related genes through 3D chromatin loops, providing an evidence-based rationale for targeting the KLF5 pathway. SIGNIFICANCE: An integrative 3D genomics methodology delineates mechanisms underlying the function of KLF5 in multiple epithelial cancers and suggests potential strategies to target cancers with aberrantly activated KLF5.


Subject(s)
Chromatin/metabolism , Epithelial Cells/metabolism , Kruppel-Like Transcription Factors/metabolism , Neoplasms, Glandular and Epithelial/metabolism , Transcription, Genetic/genetics , CRISPR-Cas Systems , Cell Line, Tumor , Cell Lineage/genetics , Cell Proliferation/genetics , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Kruppel-Like Transcription Factors/genetics , Neoplasms, Glandular and Epithelial/pathology , Phenotype , Promoter Regions, Genetic , Protein Binding/genetics
8.
Mol Cancer Res ; 18(4): 574-584, 2020 04.
Article in English | MEDLINE | ID: mdl-31862696

ABSTRACT

Genomic analysis of lung adenocarcinomas has revealed that the MGA gene, which encodes a heterodimeric partner of the MYC-interacting protein MAX, is significantly mutated or deleted in lung adenocarcinomas. Most of the mutations are loss of function for MGA, suggesting that MGA may act as a tumor suppressor. Here, we characterize both the molecular and cellular role of MGA in lung adenocarcinomas and illustrate its functional relevance in the MYC pathway. Although MGA and MYC interact with the same binding partner, MAX, and recognize the same E-box DNA motif, we show that the molecular function of MGA appears to be antagonistic to that of MYC. Using mass spectrometry-based affinity proteomics, we demonstrate that MGA interacts with a noncanonical PCGF6-PRC1 complex containing MAX and E2F6 that is involved in gene repression, while MYC is not part of this MGA complex, in agreement with previous studies describing the interactomes of E2F6 and PCGF6. Chromatin immunoprecipitation-sequencing and RNA sequencing assays show that MGA binds to and represses genes that are bound and activated by MYC. In addition, we show that, as opposed to the MYC oncoprotein, MGA acts as a negative regulator for cancer cell proliferation. Our study defines a novel MYC/MAX/MGA pathway, in which MYC and MGA play opposite roles in protein interaction, transcriptional regulation, and cellular proliferation. IMPLICATIONS: This study expands the range of key cancer-associated genes whose dysregulation is functionally equivalent to MYC activation and places MYC within a linear pathway analogous to cell-cycle or receptor tyrosine kinase/RAS/RAF pathways in lung adenocarcinomas.


Subject(s)
Adenocarcinoma of Lung/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Lung Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism , A549 Cells , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line, Tumor , Cell Proliferation/physiology , HEK293 Cells , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Proto-Oncogene Proteins c-myc/genetics
9.
Mol Cancer Res ; 17(4): 1002-1012, 2019 04.
Article in English | MEDLINE | ID: mdl-30635434

ABSTRACT

Lung adenocarcinomas are characterized by mutations in the receptor tyrosine kinase (RTK)/Ras/Raf pathway, with up to 75% of cases containing mutations in known driver genes. However, the driver alterations in the remaining cases are yet to be determined. Recent exome sequencing analysis has identified SOS1, encoding a guanine nucleotide exchange factor, as significantly mutated in lung adenocarcinomas lacking canonical oncogenic RTK/Ras/Raf pathway mutations. Here, we demonstrate that ectopic expression of lung adenocarcinoma-derived mutants of SOS1 induces anchorage-independent cell growth in vitro and tumor formation in vivo. Biochemical experiments suggest that these mutations lead to overactivation of the Ras pathway, which can be suppressed by mutations that disrupt either the Ras-GEF or putative Rac-GEF activity of SOS1. Transcriptional profiling reveals that the expression of mutant SOS1 leads to the upregulation of MYC target genes and genes associated with Ras transformation. Furthermore, we demonstrate that an AML cancer cell line harboring a lung adenocarcinoma-associated mutant SOS1 is dependent on SOS1 for survival and is also sensitive to MEK inhibition. Our work provides experimental evidence for the role of SOS1 as an oncogene and suggests a possible therapeutic strategy to target SOS1-mutated cancers. IMPLICATIONS: This study demonstrates that SOS1 mutations found in lung adenocarcinoma are oncogenic and that MEK inhibition may be a therapeutic avenue for the treatment of SOS1-mutant cancers.


Subject(s)
Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , SOS1 Protein/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Animals , Gene Expression Profiling , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mutation , NIH 3T3 Cells , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , SOS1 Protein/metabolism , Transfection , Up-Regulation , ras Proteins/genetics , ras Proteins/metabolism
10.
Nat Commun ; 9(1): 5450, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30575730

ABSTRACT

Systematic exploration of cancer cell vulnerabilities can inform the development of novel cancer therapeutics. Here, through analysis of genome-scale loss-of-function datasets, we identify adenosine deaminase acting on RNA (ADAR or ADAR1) as an essential gene for the survival of a subset of cancer cell lines. ADAR1-dependent cell lines display increased expression of interferon-stimulated genes. Activation of type I interferon signaling in the context of ADAR1 deficiency can induce cell lethality in non-ADAR1-dependent cell lines. ADAR deletion causes activation of the double-stranded RNA sensor, protein kinase R (PKR). Disruption of PKR signaling, through inactivation of PKR or overexpression of either a wildtype or catalytically inactive mutant version of the p150 isoform of ADAR1, partially rescues cell lethality after ADAR1 loss, suggesting that both catalytic and non-enzymatic functions of ADAR1 may contribute to preventing PKR-mediated cell lethality. Together, these data nominate ADAR1 as a potential therapeutic target in a subset of cancers.


Subject(s)
Adenosine Deaminase/genetics , Lung Neoplasms/genetics , RNA-Binding Proteins/genetics , eIF-2 Kinase/metabolism , A549 Cells , Gene Deletion , Gene Expression Regulation, Neoplastic , Humans , Interferon-Induced Helicase, IFIH1/metabolism , Interferons/metabolism , Phosphorylation
11.
Elife ; 72018 07 30.
Article in English | MEDLINE | ID: mdl-30059005

ABSTRACT

Alternative splicing of mRNA precursors represents a key gene expression regulatory step and permits the generation of distinct protein products with diverse functions. In a genome-scale expression screen for inducers of the epithelial-to-mesenchymal transition (EMT), we found a striking enrichment of RNA-binding proteins. We validated that QKI and RBFOX1 were necessary and sufficient to induce an intermediate mesenchymal cell state and increased tumorigenicity. Using RNA-seq and eCLIP analysis, we found that QKI and RBFOX1 coordinately regulated the splicing and function of the actin-binding protein FLNB, which plays a causal role in the regulation of EMT. Specifically, the skipping of FLNB exon 30 induced EMT by releasing the FOXC1 transcription factor. Moreover, skipping of FLNB exon 30 is strongly associated with EMT gene signatures in basal-like breast cancer patient samples. These observations identify a specific dysregulation of splicing, which regulates tumor cell plasticity and is frequently observed in human cancer.


Subject(s)
Alternative Splicing/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Filamins/genetics , Mesenchymal Stem Cells/metabolism , Animals , Base Sequence , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Exons/genetics , Female , Filamins/metabolism , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Hyaluronan Receptors/metabolism , Mice, Nude , Neoplasm Proteins/metabolism , Open Reading Frames/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Reproducibility of Results
12.
Nat Genet ; 50(7): 937-943, 2018 07.
Article in English | MEDLINE | ID: mdl-29955178

ABSTRACT

Functional redundancy shared by paralog genes may afford protection against genetic perturbations, but it can also result in genetic vulnerabilities due to mutual interdependency1-5. Here, we surveyed genome-scale short hairpin RNA and CRISPR screening data on hundreds of cancer cell lines and identified MAGOH and MAGOHB, core members of the splicing-dependent exon junction complex, as top-ranked paralog dependencies6-8. MAGOHB is the top gene dependency in cells with hemizygous MAGOH deletion, a pervasive genetic event that frequently occurs due to chromosome 1p loss. Inhibition of MAGOHB in a MAGOH-deleted context compromises viability by globally perturbing alternative splicing and RNA surveillance. Dependency on IPO13, an importin-ß receptor that mediates nuclear import of the MAGOH/B-Y14 heterodimer9, is highly correlated with dependency on both MAGOH and MAGOHB. Both MAGOHB and IPO13 represent dependencies in murine xenografts with hemizygous MAGOH deletion. Our results identify MAGOH and MAGOHB as reciprocal paralog dependencies across cancer types and suggest a rationale for targeting the MAGOHB-IPO13 axis in cancers with chromosome 1p deletion.


Subject(s)
Chromosomes, Human, Pair 1 , Neoplasms/genetics , Animals , Cell Line, Tumor , Cell Nucleus/genetics , Exons/genetics , Female , Gene Deletion , HEK293 Cells , Humans , Karyopherins/genetics , Mice , Mice, Nude , Nuclear Proteins/genetics , RNA Splicing/genetics , RNA, Small Interfering/genetics
13.
Cancer Discov ; 8(1): 108-125, 2018 01.
Article in English | MEDLINE | ID: mdl-28963353

ABSTRACT

The Krüppel-like family of transcription factors plays critical roles in human development and is associated with cancer pathogenesis. Krüppel-like factor 5 gene (KLF5) has been shown to promote cancer cell proliferation and tumorigenesis and to be genomically amplified in cancer cells. We recently reported that the KLF5 gene is also subject to other types of somatic coding and noncoding genomic alterations in diverse cancer types. Here, we show that these alterations activate KLF5 by three distinct mechanisms: (i) Focal amplification of superenhancers activates KLF5 expression in squamous cell carcinomas; (ii) Missense mutations disrupt KLF5-FBXW7 interactions to increase KLF5 protein stability in colorectal cancer; (iii) Cancer type-specific hotspot mutations within a zinc-finger DNA binding domain of KLF5 change its DNA binding specificity and reshape cellular transcription. Utilizing data from CRISPR/Cas9 gene knockout screening, we reveal that cancer cells with KLF5 overexpression are dependent on KLF5 for their proliferation, suggesting KLF5 as a putative therapeutic target.Significance: Our observations, together with previous studies that identified oncogenic properties of KLF5, establish the importance of KLF5 activation in human cancers, delineate the varied genomic mechanisms underlying this occurrence, and nominate KLF5 as a putative target for therapeutic intervention in cancer. Cancer Discov; 8(1); 108-25. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mutation , Oncogenes , Cell Proliferation/physiology , Humans
14.
Elife ; 62017 02 08.
Article in English | MEDLINE | ID: mdl-28177281

ABSTRACT

Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent. One of these, the pre-mRNA splicing factor SF3B1, is also frequently mutated in cancer. We validated SF3B1 as a CYCLOPS gene and found that human cancer cells harboring partial SF3B1 copy-loss lack a reservoir of SF3b complex that protects cells with normal SF3B1 copy number from cell death upon partial SF3B1 suppression. These data provide a catalog of copy-number associated gene dependencies and identify partial copy-loss of wild-type SF3B1 as a novel, non-driver cancer gene dependency.


Subject(s)
Gene Dosage , Neoplasms/genetics , Neoplasms/pathology , Phosphoproteins/genetics , RNA Splicing Factors/genetics , Cell Line, Tumor , Humans
15.
Oncotarget ; 7(19): 26926-34, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27095570

ABSTRACT

Oncogene inactivation in both clinical targeted therapies and conditional transgenic mouse cancer models can induce significant tumor regression associated with the robust induction of apoptosis. Here we report that in MYC-, RAS-, and BCR-ABL-induced acute lymphoblastic leukemia (ALL), apoptosis upon oncogene inactivation is mediated by the same pro-apoptotic protein, BIM. The induction of BIMin the MYC- and RAS-driven leukemia is mediated by the downregulation of miR-17-92. Overexpression of miR-17-92 blocked the induction of apoptosis upon oncogene inactivation in the MYC and RAS-driven but not in the BCR-ABL-driven ALL leukemia. Hence, our results provide novel insight into the mechanism of apoptosis upon oncogene inactivation and suggest that induction of BIM-mediated apoptosis may be an important therapeutic approach for ALL.


Subject(s)
Apoptosis/genetics , Bcl-2-Like Protein 11/genetics , Oncogenes/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Animals , Apoptosis/drug effects , Bcl-2-Like Protein 11/metabolism , Cell Line, Tumor , Disease Models, Animal , Doxycycline/pharmacology , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Gene Expression Regulation, Leukemic/drug effects , Humans , Mice, Transgenic , MicroRNAs/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , RNA Interference
16.
Nat Genet ; 48(2): 176-82, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26656844

ABSTRACT

Whole-genome analysis approaches are identifying recurrent cancer-associated somatic alterations in noncoding DNA regions. We combined somatic copy number analysis of 12 tumor types with tissue-specific epigenetic profiling to identify significant regions of focal amplification harboring super-enhancers. Copy number gains of noncoding regions harboring super-enhancers near KLF5, USP12, PARD6B and MYC are associated with overexpression of these cancer-related genes. We show that two distinct focal amplifications of super-enhancers 3' to MYC in lung adenocarcinoma (MYC-LASE) and endometrial carcinoma (MYC-ECSE) are physically associated with the MYC promoter and correlate with MYC overexpression. CRISPR/Cas9-mediated repression or deletion of a constituent enhancer within the MYC-LASE region led to significant reductions in the expression of MYC and its target genes and to the impairment of anchorage-independent and clonogenic growth, consistent with an oncogenic function. Our results suggest that genomic amplification of super-enhancers represents a common mechanism to activate cancer driver genes in multiple cancer types.


Subject(s)
Enhancer Elements, Genetic , Neoplasms, Glandular and Epithelial/genetics , Genetic Predisposition to Disease , Humans
17.
Nat Chem Biol ; 12(2): 102-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26656089

ABSTRACT

High cancer death rates indicate the need for new anticancer therapeutic agents. Approaches to discovering new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds through phenotypic compound library screening and target deconvolution by predictive chemogenomics. We found that sensitivity to 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP, across 766 cancer cell lines correlates with expression of the gene PDE3A, encoding phosphodiesterase 3A. Like DNMDP, a subset of known PDE3A inhibitors kill selected cancer cells, whereas others do not. Furthermore, PDE3A depletion leads to DNMDP resistance. We demonstrated that DNMDP binding to PDE3A promotes an interaction between PDE3A and Schlafen 12 (SLFN12), suggestive of a neomorphic activity. Coexpression of SLFN12 with PDE3A correlates with DNMDP sensitivity, whereas depletion of SLFN12 results in decreased DNMDP sensitivity. Our results implicate PDE3A modulators as candidate cancer therapeutic agents and demonstrate the power of predictive chemogenomics in small-molecule discovery.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Cytotoxins/pharmacology , Neoplasms/therapy , Pyridazines/chemistry , Pyridazines/pharmacology , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cytotoxins/chemistry , Cytotoxins/isolation & purification , Drug Delivery Systems , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Genomics , Humans , Immunoblotting
19.
PLoS One ; 9(9): e107589, 2014.
Article in English | MEDLINE | ID: mdl-25208064

ABSTRACT

The Cre/loxP system is a powerful tool for generating conditional genomic recombination and is often used to examine the mechanistic role of specific genes in tumorigenesis. However, Cre toxicity due to its non-specific endonuclease activity has been a concern. Here, we report that tamoxifen-mediated Cre activation in vivo induced the regression of primary lymphomas in p53-/- mice. Our findings illustrate that Cre activation alone can induce the regression of established tumors.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Integrases/genetics , Lymphoma/drug therapy , Lymphoma/genetics , Tamoxifen/pharmacology , Tumor Suppressor Protein p53/genetics , Animals , Apoptosis/drug effects , Carcinogenesis/genetics , Enzyme Activation/drug effects , Genetic Therapy , Integrases/metabolism , Lymphoma/metabolism , Lymphoma/pathology , Magnetic Resonance Imaging , Mice , Mice, Knockout , Promoter Regions, Genetic , Tumor Burden/drug effects , Tumor Suppressor Protein p53/deficiency , Ubiquitin C/genetics , Ubiquitin C/metabolism
20.
Cancer Cell ; 26(2): 262-72, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25117713

ABSTRACT

The MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim. The enforced expression of miR-17-92 prevents MYC suppression from inducing proliferative arrest, senescence, and apoptosis and abrogates sustained tumor regression. Knockdown of the five miR-17-92 target genes blocks senescence and apoptosis while it modestly delays proliferative arrest, thus partially recapitulating miR-17-92 function. We conclude that MYC, via miR-17-92, maintains a neoplastic state by suppressing specific target genes.


Subject(s)
Cell Proliferation , Cell Survival , Lymphoma/metabolism , MicroRNAs/genetics , Proto-Oncogene Proteins c-myc/physiology , Animals , Apoptosis , Gene Expression Regulation, Neoplastic , Lymphoma/genetics , Lymphoma/pathology , Mice , Multigene Family , Neoplasm Transplantation , RNA Interference , Tumor Burden , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...