Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 4676, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36949218

ABSTRACT

The DAMA/LIBRA collaboration has reported the observation of an annual modulation in the event rate that has been attributed to dark matter interactions over the last two decades. However, even though tremendous efforts to detect similar dark matter interactions were pursued, no definitive evidence has been observed to corroborate the DAMA/LIBRA signal. Many studies assuming various dark matter models have attempted to reconcile DAMA/LIBRA's modulation signals and null results from other experiments, however no clear conclusion can be drawn. Apart from the dark matter hypothesis, several studies have examined the possibility that the modulation is induced by variations in detector's environment or their specific analysis methods. In particular, a recent study presents a possible cause of the annual modulation from an analysis method adopted by the DAMA/LIBRA experiment in which the observed annual modulation could be reproduced by a slowly varying time-dependent background. Here, we study the COSINE-100 data using an analysis method similar to the one adopted by the DAMA/LIBRA experiment and observe a significant annual modulation, however the modulation phase is almost opposite to that of the DAMA/LIBRA data. Assuming the same background composition for COSINE-100 and DAMA/LIBRA, simulated experiments for the DAMA/LIBRA without dark matter signals also provide significant annual modulation with an amplitude similar to DAMA/LIBRA with opposite phase. Even though this observation does not directly explain the DAMA/LIBRA results directly, this interesting phenomenon motivates more profound studies of the time-dependent DAMA/LIBRA background data.

2.
Sci Adv ; 7(46): eabk2699, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34757778

ABSTRACT

We present new constraints on dark matter interactions using 1.7 years of COSINE-100 data. The COSINE-100 experiment, consisting of 106 kg of tallium-doped sodium iodide [NaI(Tl)] target material, is aimed to test DAMA's claim of dark matter observation using the same NaI(Tl) detectors. Improved event selection requirements, a more precise understanding of the detector background, and the use of a larger dataset considerably enhance the COSINE-100 sensitivity for dark matter detection. No signal consistent with the dark matter interaction is identified and rules out model-dependent dark matter interpretations of the DAMA signals in the specific context of standard halo model with the same NaI(Tl) target for various interaction hypotheses.

3.
Phys Rev Lett ; 104(13): 132502, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20481879

ABSTRACT

We have analyzed data of the DISTO experiment on the exclusive pp --> pLambdaK+ reaction at 2.85 GeV to search for a strongly bound compact K- pp(approximately = X) state to be formed in the pp --> K+ + X reaction. The observed spectra of the K+ missing mass and the pLambda invariant-mass with high transverse momenta of p and K+ revealed a broad distinct peak of 26-sigma confidence with a mass M(X)=2267+/-3(stat)+/-5(syst) MeV/c2 and a width Gamma(X)=118+/-8(stat)+/-10(syst) MeV. The enormously large cross section indicates formation of a compact K- pp with a large binding energy of B(K)=103 MeV, which can be a possible gateway toward cold and dense kaonic nuclear matter.

4.
Phys Rev Lett ; 103(20): 202501, 2009 Nov 13.
Article in English | MEDLINE | ID: mdl-20365979

ABSTRACT

An experimental study of the (16)O(e,e'K(+))(Lambda)(16)N reaction has been performed at Jefferson Lab. A thin film of falling water was used as a target. This permitted a simultaneous measurement of the p(e,e'K(+))Lambda, Sigma(0) exclusive reactions and a precise calibration of the energy scale. A ground-state binding energy of 13.76+/-0.16 MeV was obtained for (Lambda)(16)N with better precision than previous measurements on the mirror hypernucleus (Lambda)(16)O. Precise energies have been determined for peaks arising from a Lambda in s and p orbits coupled to the p(1/2) and p(3/2) hole states of the (15)N core nucleus.

5.
Phys Rev Lett ; 101(18): 182502, 2008 Oct 31.
Article in English | MEDLINE | ID: mdl-18999823

ABSTRACT

We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_{1} of the neutron and 3He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c);{2}. Global duality is observed for the spin-structure function g_{1} down to at least Q;{2}=1.8 (GeV/c);{2} in both targets. We have also formed the photon-nucleon asymmetry A1 in the resonance region for 3He and found no strong Q2 dependence above 2.2 (GeV/c);{2}.

6.
Phys Rev Lett ; 101(2): 022303, 2008 Jul 11.
Article in English | MEDLINE | ID: mdl-18764175

ABSTRACT

We present a measurement of the spin-dependent cross sections for the 3He over -->(e over -->,e')X reaction in the quasielastic and resonance regions at a four-momentum transfer 0.1< or =Q2< or =0.9 GeV2. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt-Cottingham and extended Gerasimov-Drell-Hearn sum rules for the first time. The data are also compared to an impulse approximation calculation and an exact three-body Faddeev calculation in the quasielastic region.

7.
Science ; 320(5882): 1476-8, 2008 Jun 13.
Article in English | MEDLINE | ID: mdl-18511658

ABSTRACT

The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

8.
Phys Rev Lett ; 99(5): 052501, 2007 Aug 03.
Article in English | MEDLINE | ID: mdl-17930747

ABSTRACT

An experiment measuring electroproduction of hypernuclei has been performed in hall A at Jefferson Lab on a 12C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a ring imaging Cherenkov detector were added to the hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Thus, the observed (Lambda)(12)B spectrum shows for the first time identifiable strength in the core-excited region between the ground-state s-wave Lambda peak and the 11 MeV p-wave Lambda peak.

9.
Phys Rev Lett ; 99(7): 072501, 2007 Aug 17.
Article in English | MEDLINE | ID: mdl-17930888

ABSTRACT

We investigated simultaneously the 12C(e,e'p) and 12C(e,e'pp) reactions at Q2=2 (GeV/c)2, xB=1.2, and in an (e, e'p) missing-momentum range from 300 to 600 MeV/c. At these kinematics, with a missing momentum greater than the Fermi momentum of nucleons in a nucleus and far from the delta excitation, short-range nucleon-nucleon correlations are predicted to dominate the reaction. For (9.5+/-2)% of the 12C(e,e'p) events, a recoiling partner proton was observed back-to-back to the 12C(e,e'p) missing-momentum vector, an experimental signature of correlations.

10.
Phys Rev Lett ; 98(15): 152001, 2007 Apr 13.
Article in English | MEDLINE | ID: mdl-17501338

ABSTRACT

Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s=5-11 and -t=2-7 GeV2 with a statistical accuracy of a few percent. The scaling power for the s dependence of the cross section at fixed center-of-mass angle was found to be 8.0+/-0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.

11.
Phys Rev Lett ; 99(20): 202002, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-18233135

ABSTRACT

High-precision measurements of the proton elastic form-factor ratio, mu pG p E/G p M, have been made at four-momentum transfer, Q2, values between 0.2 and 0.5 GeV2. The new data, while consistent with previous results, clearly show a ratio less than unity and significant differences from the central values of several recent phenomenological fits. By combining the new form-factor ratio data with an existing cross-section measurement, one finds that in this Q2 range the deviation from unity is primarily due to G p E being smaller than expected.

12.
Phys Rev Lett ; 96(2): 022003, 2006 Jan 20.
Article in English | MEDLINE | ID: mdl-16486563

ABSTRACT

We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from 4He at an average scattering angle = 5.7 degrees and a four-momentum transfer Q2 = 0.091 GeV2 . From these data, for the first time, the strange electric form factor of the nucleon G(E)s can be isolated. The measured asymmetry of A(PV) = (6.72 +/- 0.84(stat) +/- 0.21(syst) x 10(-6) yields a value of G(E)s = -0.038 +/- 0.042(stat) +/- 0.010(syst), consistent with zero.

13.
Phys Rev Lett ; 95(14): 142002, 2005 Sep 30.
Article in English | MEDLINE | ID: mdl-16241646

ABSTRACT

We present the first measurement of the Q2 dependence of the neutron spin structure function g2(n) at five kinematic points covering 0.57 (GeV/c)2 < or = Q2 < or = 1.34 (GeV/c)2 at x approximately = 0.2. Though the naive quark-parton model predicts g2 = 0, nonzero values occur in more realistic models of the nucleon which include quark-gluon correlations, finite quark masses, or orbital angular momentum. When scattering from a noninteracting quark, g2(n) can be predicted using next-to-leading order fits to world data for g1(n). Deviations from this prediction provide an opportunity to examine QCD dynamics in nucleon structure. Our results show a positive deviation from this prediction at lower Q2, indicating that contributions such as quark-gluon interactions may be important. Precision data obtained for g1(n) are consistent with next-to-leading order fits to world data.

14.
Phys Rev Lett ; 93(21): 212001, 2004 Nov 19.
Article in English | MEDLINE | ID: mdl-15600997

ABSTRACT

We extract the Bjorken integral Gamma1(p-n) in the range 0.17 < Q2 < 1.10 GeV2 from inclusive scattering of polarized electrons by polarized protons, deuterons, and 3He, for the region in which the integral is dominated by nucleon resonances. These data bridge the domains of the hadronic and partonic descriptions of the nucleon. In combination with earlier measurements at higher Q2, we extract the nonsinglet twist-4 matrix element f2.

15.
Phys Rev Lett ; 93(15): 152301, 2004 Oct 08.
Article in English | MEDLINE | ID: mdl-15524867

ABSTRACT

The generalized forward spin polarizabilities gamma(0) and delta(LT) of the neutron have been extracted for the first time in a Q2 range from 0.1 to 0.9 GeV2. Since gamma(0) is sensitive to nucleon resonances and delta(LT) is insensitive to the Delta resonance, it is expected that the pair of forward spin polarizabilities should provide benchmark tests of the current understanding of the chiral dynamics of QCD. The new results on delta(LT) show significant disagreement with chiral perturbation theory calculations, while the data for gamma(0) at low Q2 are in good agreement with a next-to-leading-order relativistic baryon chiral perturbation theory calculation. The data show good agreement with the phenomenological MAID model.

16.
Phys Rev Lett ; 92(2): 022301, 2004 Jan 16.
Article in English | MEDLINE | ID: mdl-14753931

ABSTRACT

We have measured the spin structure functions g(1) and g(2) of 3He in a double-spin experiment by inclusively scattering polarized electrons at energies ranging from 0.862 to 5.058 GeV off a polarized 3He target at a 15.5 degrees scattering angle. Excitation energies covered the resonance and the onset of the deep inelastic regions. We have determined for the first time the Q2 evolution of Gamma(1)(Q2)= integral (1)(0)g(1)(x,Q2)dx, Gamma(2)(Q2)= integral (1)(0)g(2)(x,Q2)dx, and d(2)(Q2)= integral (1)(0)x(2)[2g(1)(x,Q2)+3g(2)(x,Q2)]dx for the neutron in the range 0.1< or =Q2< or =0.9 GeV2 with good precision. Gamma(1)(Q2) displays a smooth variation from high to low Q2. The Burkhardt-Cottingham sum rule holds within uncertainties and d(2) is nonzero over the measured range.

17.
Phys Rev Lett ; 92(1): 012004, 2004 Jan 09.
Article in English | MEDLINE | ID: mdl-14753984

ABSTRACT

We have measured the neutron spin asymmetry A(n)(1) with high precision at three kinematics in the deep inelastic region at x=0.33, 0.47, and 0.60, and Q(2)=2.7, 3.5, and 4.8 (GeV/c)(2), respectively. Our results unambiguously show, for the first time, that A(n)(1) crosses zero around x=0.47 and becomes significantly positive at x=0.60. Combined with the world proton data, polarized quark distributions were extracted. Our results, in general, agree with relativistic constituent quark models and with perturbative quantum chromodynamics (PQCD) analyses based on the earlier data. However they deviate from PQCD predictions based on hadron helicity conservation.

18.
Phys Rev Lett ; 89(24): 242301, 2002 Dec 09.
Article in English | MEDLINE | ID: mdl-12484938

ABSTRACT

We present data on the inclusive scattering of polarized electrons from a polarized 3He target at energies from 0.862 to 5.06 GeV, obtained at a scattering angle of 15.5 degrees. Our data include measurements from the quasielastic peak, through the nucleon resonance region, and beyond, and were used to determine the virtual photon cross-section difference sigma(1/2)-sigma(3/2). We extract the extended Gerasimov-Drell-Hearn integral for the neutron in the range of four-momentum transfer squared Q2 of 0.1-0.9 GeV2.

19.
Phys Rev Lett ; 89(9): 092001, 2002 Aug 26.
Article in English | MEDLINE | ID: mdl-12190389

ABSTRACT

Total and differential cross sections for the exclusive reaction pp-->pp rho observed via the pi(+)pi(-) decay channel have been measured at p(beam)=3.67 GeV/c. The observed total meson production cross section is determined to be (23.4+/-0.8+/-8) mu b and is significantly lower than typical cross sections used in model calculations for heavy-ion collisions. The differential cross sections measured indicate a strong anisotropy (approximately cos(theta(CM)(rho)) in the rho(0) meson production.

SELECTION OF CITATIONS
SEARCH DETAIL
...