Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Drug Des Devel Ther ; 14: 1729-1737, 2020.
Article in English | MEDLINE | ID: mdl-32440098

ABSTRACT

INTRODUCTION: This study characterized the pharmacokinetics (PKs) of a donepezil patch formulation currently under development, using mixed effect modeling analysis, and explored optimal patch dosing regimens in comparison with the donepezil oral formulation. METHODS: PK data used in this analysis were from 60 healthy Korean male subjects participating in two Phase I studies, where subjects received single or multiple doses of donepezil of 43.75, 87.5, and 175 mg via patches, and 12 of them received a single oral dose of 10 mg of donepezil, followed by a single dose of donepezil via a patch. Donepezil PKs were analyzed by nonlinear mixed effect modeling using NONMEM software. RESULTS: A well-stirred model with two-compartment distribution and delayed absorption was chosen as the best model for the oral formulation. The PKs of donepezil after the patch applications were best described by a two-compartment linear model with zero-order absorption (D2) and absorption delay. The relative bioavailability (BA) of donepezil after the patch application compared with oral dosing was described to be affected by the duration of patch application. CONCLUSION: PK simulations based on the chosen PK models suggested that, overall, donepezil exposure in plasma is similar whether with 10 mg of oral donepezil every 24 h or a 175 mg patch every 72 h, and likewise with 5 mg of oral donepezil every 24 h or an 87.5 mg patch every 72 h.


Subject(s)
Cholinesterase Inhibitors/pharmacokinetics , Donepezil/pharmacokinetics , Models, Biological , Administration, Oral , Adult , Biological Availability , Cholinesterase Inhibitors/administration & dosage , Cholinesterase Inhibitors/blood , Donepezil/administration & dosage , Donepezil/blood , Drug Compounding , Healthy Volunteers , Humans , Male , Monte Carlo Method
2.
J Control Release ; 322: 13-30, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32169534

ABSTRACT

In this study, a system for oral delivery of oxaliplatin (OXA) was prepared for metronomic chemotherapy to enhance antitumor efficacy and modulate tumor immunity. OXA was complexed with Nα-deoxycholyl-l-lysyl-methylester (DCK) (OXA/DCK) and formulated as a nanoemulsion (OXA/DCK-NE). OXA/DCK-NE showed 3.35-fold increased permeability across a Caco-2 cell monolayer, resulting in 1.73-fold higher oral bioavailability than free OXA. In addition, treatment of the B16F10.OVA cell line with OXA/DCK-NE resulted in successful upregulation of immunogenic cell death (ICD) markers both in vitro and in vivo. In a B16F10.OVA tumor-bearing mouse model, treatment with OXA/DCK-NE substantially impeded tumor growth by 63.9 ± 13.3% compared to the control group, which was also greater than the intravenous (IV) OXA group. Moreover, treatment with a combination of oral OXA/DCK-NE and anti-programmed cell death protein-1 (αPD-1) antibody resulted in 78.3 ± 9.67% greater inhibition compared to controls. More important, OXA/DCK-NE alone had immunomodulatory effects, such as enhancement of tumor antigen uptake, activation of dendritic cells in tumor-draining lymph nodes, and augmentation of both the population and function of immune effector cells in tumor tissue as well as in the spleen; no such effects were seen in the OXA IV group. These observations provide a rationale for combining oral metronomic OXA with immunotherapy to elicit synergistic antitumor effects.


Subject(s)
Oxaliplatin , Administration, Oral , Animals , Biological Availability , Biological Transport , Caco-2 Cells , Cell Line, Tumor , Humans , Mice
3.
Int J Nanomedicine ; 14: 6339-6356, 2019.
Article in English | MEDLINE | ID: mdl-31496690

ABSTRACT

OBJECTIVE: The rational combination of immunotherapy with standard chemotherapy shows synergistic clinical activities in cancer treatment. In the present study, an oral powder formulation of pemetrexed (PMX) was developed to enhance intestinal membrane permeability and investigate its application in metronomic chemotherapy in combination with immunotherapy. METHODS: PMX was ionically complexed with a bile acid derivative (Nα-deoxycholyl-l-lysyl-methylester; DCK) as a permeation enhancer and mixed with dispersing agents, such as poloxamer 188 (P188) and Labrasol, to form an amorphous oral powder formulation of PMX/DCK (PMX/DCK-OP). RESULTS: The apparent permeability (Papp) of PMX/DCK-OP across a Caco-2 cell monolayer was 2.46- and 8.26-fold greater than that of PMX/DCK and free PMX, respectively, which may have been due to the specific interaction of DCK with bile acid transporters, as well as the alteration of membrane fluidity due to Labrasol and P188. Furthermore, inhibition of bile acid transporters by actinomycin D in Caco-2 cell monolayers decreased the Papp of PMX/DCK-OP by 75.4%, suggesting a predominant role of bile acid transporters in the intestinal absorption of PMX/DCK-OP. In addition, caveola/lipid raft-dependent endocytosis, macropinocytosis, passive diffusion, and paracellular transport mechanisms significantly influenced the permeation of PMX/DCK-OP through the intestinal membrane. Therefore, the oral bioavailability of PMX/DCK-OP in rats was 19.8%±6.93%, which was 294% higher than that of oral PMX. Moreover, an in vivo anticancer efficacy study in B16F10 cell-bearing mice treated with a combination of oral PMX/DCK-OP and intraperitoneal anti-PD1 exhibited significant suppression of tumor growth, and the tumor volume was maximally inhibited by 2.03- and 3.16-fold compared to the oral PMX/DCK-OP and control groups, respectively. CONCLUSION: These findings indicated the therapeutic potential of a combination of low-dose oral chemotherapy and immunotherapy for synergistic anticancer efficacy.


Subject(s)
Deoxycholic Acid/chemistry , Drug Compounding , Intestines/drug effects , Pemetrexed/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Availability , Biological Transport/drug effects , Caco-2 Cells , Cell Proliferation/drug effects , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/chemistry , Humans , Ions , Lysine/analogs & derivatives , Lysine/chemistry , Mice, Inbred BALB C , Pemetrexed/administration & dosage , Pemetrexed/blood , Pemetrexed/pharmacokinetics , Permeability , Rats, Sprague-Dawley
4.
Pharmaceutics ; 11(7)2019 Jul 13.
Article in English | MEDLINE | ID: mdl-31337061

ABSTRACT

Metronomic chemotherapy (MCT) is defined as the frequent administration of low-dose chemotherapeutics, without long drug-free periods, with the exertion of antitumor activity exclusively through anti-angiogenic mechanisms. In this study, we have developed an orally available formulation of pemetrexed (PMX) for MCT. PMX was first complexed ionically with Nα-deoxycholyl-l-lysyl-methylester (DCK) as the permeation enhancer. This was followed by dispersion with poloxamer 188 and Labrasol to form the solid oral formulation of PMX (PMX/DCK-OP). PMX/DCK-OP exhibited a 10.6-fold increase in permeability across a Caco-2 cell monolayer compared to PMX alone. This resulted in a 70-fold increase in the oral bioavailability of PMX/DCK-OP in mice over oral PMX alone. In the A549 xenograft model, tumor volume was reduced by 51.1% in the PMX/DCK-OP treated group compared to only 32.8% in the maximum tolerated dose (MTD)-treated group. Furthermore, PMX/DCK-OP exhibited a significant anti-angiogenic effect on the A549 xenograft mice when compared to the MTD-treated group, as indicated by microvessel density quantification for CD-31. In addition, PMX/DCK-OP enhanced the release of an endogenous angiogenesis inhibitor, thrombospondin-1 (TSP-1), into both the blood circulation and the tumor microenvironment. Therefore, due to its oral route of administration, PMX/DCK-OP appears to be a better alternative to the conventional treatment of PMX.

5.
Drug Des Devel Ther ; 9: 1419-26, 2015.
Article in English | MEDLINE | ID: mdl-25792802

ABSTRACT

BACKGROUND: Donepezil is an acetylcholinesterase inhibitor indicated for Alzheimer's disease. The aim of this randomized, single-blind, placebo-controlled, single-dose, dose-escalation study was to investigate the safety, tolerability, and pharmacokinetics of the donepezil patch in healthy male subjects. METHODS: Each healthy male subject received a single transdermal donepezil patch (72 hours patch-on periods) of 43.75 mg/12.5 cm(2), 87.5 mg/25 cm(2), or 175 mg/50 cm(2). Serial blood samples were collected up to 312 hours after patch application. The plasma concentrations of donepezil were determined by using a validated liquid chromatography-tandem mass spectrometry method. Pharmacokinetic parameters were obtained by noncompartmental analysis. Tolerability of the patches and performance of the patches (adhesion, skin irritation, residual donepezil content in the patch) were assessed throughout the study. RESULTS: The study was completed by 36 healthy subjects. After patch application, the maximal plasma donepezil concentration (Cmax) and the area under the curve (AUC) increased in a dose-proportional manner. Median time to Cmax was ~74-76 hours (~2-4 hours after patch removal), and mean t1/2ß was ~63.77-93.07 hours. The average donepezil residue in the patch after 72 hours was ~73.9%-86.7% of the loading dose. There were neither serious adverse events nor adverse events that lead to discontinuation. Skin adhesion of the patch was good in 97.2% of the subjects. All skin irritations after patch removal were mild and were resolved during the study period. CONCLUSION: The donepezil patch appeared to be generally well tolerated and adhesive. Pharmacokinetic analysis of the donepezil patch demonstrated linear kinetics.


Subject(s)
Indans/pharmacokinetics , Piperidines/pharmacokinetics , Transdermal Patch , Administration, Cutaneous , Adult , Chromatography, Liquid , Donepezil , Drug Tolerance , Healthy Volunteers , Humans , Indans/administration & dosage , Indans/blood , Male , Middle Aged , Piperidines/administration & dosage , Piperidines/blood , Single-Blind Method , Tandem Mass Spectrometry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL