Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 276: 116294, 2024 May.
Article in English | MEDLINE | ID: mdl-38574646

ABSTRACT

Particulate matter (PM), released into the air by a variety of natural and human activities, is a key indicator of air pollution. Although PM is known as the extensive health hazard to affect a variety of illness, few studies have specifically investigated the effects of PM10 exposure on schizophrenic development. In the present study, we aimed to investigate the impact of PM10 on MK-801, N-methyl-D-aspartate (NMDA) receptor antagonist, induced schizophrenia-like behaviors in C57BL/6 mouse. Preadolescent mice were exposed PM10 to 3.2 mg/m3 concentration for 4 h/day for 2 weeks through a compartmentalized whole-body inhalation chamber. After PM10 exposure, we conducted behavioral tests during adolescence and adulthood to investigate longitudinal development of schizophrenia. We found that PM10 exacerbated schizophrenia-like behavior, such as psychomotor agitation, social interaction deficits and cognitive deficits at adulthood in MK-801-induced schizophrenia animal model. Furthermore, the reduced expression levels of brain-derived neurotrophic factor (BDNF) and the phosphorylation of BDNF related signaling molecules, extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB), were exacerbated by PM10 exposure in the adult hippocampus of MK-801-treated mice. Thus, our present study demonstrates that exposure to PM10 in preadolescence exacerbates the cognitive impairment in animal model of schizophrenia, which are considered to be facilitated by the decreased level of BDNF through reduced ERK-CREB expression.


Subject(s)
Brain-Derived Neurotrophic Factor , Cyclic AMP Response Element-Binding Protein , Dizocilpine Maleate , Mice, Inbred C57BL , Particulate Matter , Schizophrenia , Signal Transduction , Animals , Brain-Derived Neurotrophic Factor/metabolism , Schizophrenia/chemically induced , Particulate Matter/toxicity , Dizocilpine Maleate/pharmacology , Mice , Male , Signal Transduction/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Air Pollutants/toxicity , Behavior, Animal/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism
2.
J Ethnopharmacol ; 314: 116627, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37164258

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cynanchum paniculatum (Bunge) Kitag. ex H. Hara (Asclepiadaceae) have been traditionally used in East Asia as analgesic or antiviral agents. Interestingly, some Chinese and Korean traditional medicinal books reported that the use of C. paniculatum in the treatment of psychotic symptoms, such as hallucinations and delusions. AIM OF THE STUDY: In this study, we aimed to investigate whether C. paniculatum could improve sensorimotor gating disruption in mice with MK-801-induced schizophrenia-like behaviors. We also aimed to identify the active component of C. paniculatum that could potentially serve as a treatment for schizophrenia and found that paeonol, the major constituent compound of C. paniculatum, showed potential as a treatment for schizophrenia. MATERIALS AND METHODS: To assess the effect of paeonol on mice with MK-801-induced schizophrenia-like behaviors, we carried out a series of behavioral tests related with symptoms of schizophrenia. In addition, we utilized Western blotting and ELISA techniques to investigate the antipsychotic actions of paeonol. RESULT: C. paniculatum extract (100 or 300 mg/kg) and paenol (10 or 30 mg/kg) significantly reversed MK-801-induced prepulse deficits in acoustic startle response test. In addition, paeonol (10 or 30 mg/kg) attenuated social novelty preference and novel object recognition memory on MK-801-induced schizophrenia-like behaviour in mice. Furthermore, the phosphorylation levels of PI3K, Akt, GSK3ß and NF-κB, as well as related pro-inflammatory cytokine, such as IL-1ß and TNF-α, were significantly reversed by the administration of paeonol (10 or 30 mg/kg) in the prefrontal cortex of MK-801-treated mice. CONCLUSIONS: Collectively, these data show that paeonol can potentially be used as an agent for treating sensorimotor gating deficits, negative symptoms, and cognitive deficits, such as those observed in schizophrenia with few adverse effects.


Subject(s)
Cynanchum , Schizophrenia , Animals , Mice , NF-kappa B/metabolism , Dizocilpine Maleate , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases , Reflex, Startle , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Schizophrenia/metabolism , Glycogen Synthase Kinase 3 beta
3.
Int J Mol Sci ; 24(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37175425

ABSTRACT

The NLRP3 inflammasome is upregulated by various agents, such as nuclear factor-kappa B (NF-κB), lipopolysaccharide (LPS), and adenosine triphosphate (ATP). The NLRP3 inflammasome facilitations the maturation of interleukin (IL)-1ß, a proinflammatory cytokine that is critically involved in the pathogenesis of atopic dermatitis (AD). Although the NLRP3 inflammasome clearly exacerbates AD symptoms such as erythema and pruritus, drugs for AD patients targeting the NLRP3 inflammasome are still lacking. Based on the previous findings that Mentha arvensis essential oil (MAEO) possesses strong anti-inflammatory and anti-AD properties through its inhibition of the ERK/NF-κB signaling pathway, we postulated that MAEO might be capable of modulating the NLRP3 inflammasome in AD. The aim of this research was to investigate whether MAEO affects the inhibition of NLRP3 inflammasome activation in murine bone marrow-derived macrophages (BMDMs) stimulated with LPS + ATP in vitro and in a murine model displaying AD-like symptoms induced by 2,4-dinitrochlorobenzene (DNCB) in vivo. We found that MAEO inhibited the expression of NLRP3 and caspase-1, leading to the suppression of NLRP3 inflammasome activation and IL-1ß production in BMDMs stimulated with LPS + ATP. In addition, MAEO exhibited efficacy in ameliorating AD symptoms in a murine model induced by DNCB, as indicated by the reduction in dermatitis score, ear thickness, transepidermal water loss (TEWL), epidermal thickness, and immunoglobulin E (IgE) levels. Furthermore, MAEO attenuated the recruitment of NLRP3-expressing macrophages and NLRP3 inflammasome activation in murine dorsal skin lesions induced by DNCB. Overall, we provide evidence for the anti-AD effects of MAEO via inhibition of NLRP3 inflammasome activation.


Subject(s)
Dermatitis, Atopic , Inflammasomes , Animals , Mice , Inflammasomes/metabolism , Dinitrochlorobenzene/adverse effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Inbred BALB C , Lipopolysaccharides/toxicity , Disease Models, Animal , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Cytokines/metabolism
4.
Pharmaceutics ; 16(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38258052

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease influenced by a complex interplay of genetic and environmental factors. The activation of the JAK-STAT pathway increases the expression of inflammatory cytokines such as IL-4 and IL-13, further deteriorating AD. Therefore, for the treatment of AD, the JAK-STAT pathway is emerging as a significant target, alongside inflammatory cytokines. This study investigates the potential therapeutic effects of a novel herbal complex, LK5, composed of Scutellaria baicalensis, Liriope platyphylla, Sophora flavescens, Dictammus dasycarpus, and Phellodendron schneider, known for their anti-inflammatory and immune-modulating properties. We examined the anti-inflammatory and anti-AD effects of the LK5 herbal complex in HaCaT cells stimulated by LPS and IL-4/IL-13, as well as in a mouse model of AD induced by DNCB. In HaCaT cells stimulated with LPS or IL-4/IL-13, the LK5 herbal complex demonstrated anti-inflammatory effects by inhibiting the expression of inflammatory cytokines including TNF-α, IL-6, and IL-1ß, and downregulating the phosphorylation of STAT proteins. In a murine AD-like model induced by DNCB, administration of the LK5 herbal complex significantly ameliorated clinical symptoms, including dermatitis, ear thickness, and TEWL. Histological analysis revealed a reduction in epidermal thickness and mast cell infiltration. The LK5 herbal complex also inhibited pruritus induced by compound 48/80. Furthermore, the LK5 herbal complex treatment significantly decreased the levels of inflammatory cytokines such as TSLP, IL-6, and IgE in plasma and ear tissue of AD-induced mice. These findings suggest that the LK5 herbal complex may modulate the immune response and alleviate AD symptoms by inhibiting STAT pathways.

5.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36297328

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by pruritus, dry skin and redness on the face and inside elbows or knees. Most patients with AD are children and youths, but it can also develop in adults. In the therapeutic aspect, treatment with corticosteroids for AD has several side effects, such as weight loss, atrophy and acne. In the current study, we examined the anti-inflammatory effect of Moringa concanensis leaves on HaCaT keratinocytes and 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis-like symptoms in BALB/c mice. We observed that M. concanensis treatment exhibited significant inhibition in the production of inflammatory mediators and proinflammatory cytokines, such as IL-1ß, in LPS-induced HaCaT keratinocytes by downregulating the NLRP3 inflammasome activation. Moreover, M. concanensis inhibited the activation of JNK, AP-1 and p65, which resulted in the deformation of NLRP3 in LPS-stimulated HaCaT cells. In mice with DNCB-induced AD-like skin lesions, the administration of M. concanensis ameliorated the clinical symptoms, such as the dermatitis score, thickness of lesional ear skin and TEWL. Furthermore, M. concanensis could attenuate the activation of the immune system, such as reducing the spleen index, concentration of the IgE levels and expression of the NLRP3 inflammasome in ear tissues. Therefore, our results suggest that M. concanensis exerts anti-atopic dermatitis effects by inhibiting the NLRP3 inflammasome-mediated IL-1ß.

SELECTION OF CITATIONS
SEARCH DETAIL
...