Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 328: 116910, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36495826

ABSTRACT

Urban air pollution is a global concern impairing citizens' health, thus monitoring is a pressing need for city managers. City-wide networks for air pollution monitoring based on low-cost sensors are promising to provide real-time data with detail and scale never before possible. However, they still present limitations preventing their ubiquitous use. Thus, this study aimed to perform a post-deployment validation and calibration based on two step methods for ozone low-cost sensor of a city-wide network for air pollution and meteorology monitoring using low-cost sensors focusing on the main challenges. Four of the 23 data collection units (DCUs) of the UrbanSense network installed in Porto city (Portugal) with low-cost sensors for particulate matter (PM), carbon monoxide (CO), ozone (O3), and meteorological variables (temperature, relative humidity, luminosity, precipitation, and wind speed and direction) were evaluated. This study identified post-deployment challenges related to their validation and calibration. The preliminary validation showed that PM, CO and precipitation sensors recorded only unreliable data, and other sensors (wind speed and direction) very few data. A multi-step calibration strategy was implemented: inter-DCU calibration (1st step, for O3, temperature and relative humidity) and calibration with a reference-grade instrument (2nd step, for O3). In the 1st step, multivariate linear regression (MLR) resulted in models with better performance than non-linear models such as artificial neural networks (errors almost zero and R2 > 0.80). In the 2nd step, the calibration models using non-linear machine learning boosting algorithms, namely Stochastic Gradient Boosting Regressor (both with the default and post-tuning hyper-parameters), performed better than artificial neural networks and linear regression approaches. The calibrated O3 data resulted in a marginal improvement from the raw data, with error values close to zero, with low predictability (R2 ∼ 0.32). The lessons learned with the present study evidenced the need to redesign the calibration strategy. Thus, a novel multi-step calibration strategy is proposed, based on two steps (pre and post-deployment calibration). When performed cyclically and continuously, this strategy reduces the need for reference instruments, while probably minimising data drifts over time. More experimental campaigns are needed to collect more data and further improve calibration models.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Air Pollutants/analysis , Calibration , Environmental Monitoring/methods , Air Pollution/analysis , Particulate Matter/analysis , Data Collection
2.
Sci Total Environ ; 727: 138385, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32498203

ABSTRACT

The use of low-cost sensor technology to monitor air pollution has made remarkable strides in the last decade. The development of low-cost devices to monitor air quality in indoor environments can be used to understand the behaviour of indoor air pollutants and potentially impact on the reduction of related health impacts. These user-friendly devices are portable, require low-maintenance, and can enable near real-time, continuous monitoring. They can also contribute to citizen science projects and community-driven science. However, low-cost sensors have often been associated with design compromises that hamper data reliability. Moreover, with the rapidly increasing number of studies, projects, and grey literature based on low-cost sensors, information got scattered. Intending to identify and review scientifically validated literature on this topic, this study critically summarizes the recent research pertinent to the development of indoor air quality monitoring devices using low-cost sensors. The method employed for this review was a thorough search of three scientific databases, namely: ScienceDirect, IEEE, and Scopus. A total of 891 titles published since 2012 were found and scanned for relevance. Finally, 41 research articles consisting of 35 unique device development projects were reviewed with a particular emphasis on device development: calibration and performance of sensors, the processor used, data storage and communication, and the availability of real-time remote access of sensor data. The most prominent finding of the study showed a lack of studies consisting of sensor performance as only 16 out of 35 projects performed calibration/validation of sensors. An even fewer number of studies conducted these tests with a reference instrument. Hence, a need for more studies with calibration, credible validation, and standardization of sensor performance and assessment is recommended for subsequent research.

SELECTION OF CITATIONS
SEARCH DETAIL
...