Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Infect Dis ; 28(1): 196-200, 2022 01.
Article in English | MEDLINE | ID: mdl-34647864

ABSTRACT

We report severe acute respiratory syndrome coronavirus 2 in semen by using quantitative reverse transcription PCR during the late convalescent phase. Virus was associated with adequate humoral and cell-mediated responses, suggesting possible seeding of the immune-privileged testes. We provide longitudinal semen quality data for 6 other men, including 3 who had oligozoospermia.


Subject(s)
COVID-19 , Oligospermia , Humans , Male , RNA, Viral/genetics , SARS-CoV-2 , Semen , Semen Analysis , Virus Shedding
2.
Microbiol Spectr ; 9(2): e0005521, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34643448

ABSTRACT

Bacterial-viral interactions in saliva have been associated with morbidity and mortality for respiratory viruses such as influenza and SARS-CoV. However, such transkingdom relationships during SARS-CoV-2 infection are currently unknown. Here, we aimed to elucidate the relationship between saliva microbiota and SARS-CoV-2 in a cohort of newly hospitalized COVID-19 patients and controls. We used 16S rRNA sequencing to compare microbiome diversity and taxonomic composition between COVID-19 patients (n = 53) and controls (n = 59) and based on saliva SARS-CoV-2 viral load as measured using reverse transcription PCR (RT-PCR). The saliva microbiome did not differ markedly between COVID-19 patients and controls. However, we identified significant differential abundance of numerous taxa based on saliva SARS-CoV-2 viral load, including multiple species within Streptococcus and Prevotella. IMPORTANCE Alterations to the saliva microbiome based on SARS-CoV-2 viral load indicate potential biologically relevant bacterial-viral relationships which may affect clinical outcomes in COVID-19 disease.


Subject(s)
Bacteria/classification , COVID-19/pathology , Microbial Interactions/physiology , SARS-CoV-2/isolation & purification , Saliva/microbiology , Bacteria/genetics , Dysbiosis/microbiology , Female , Humans , Male , Microbiota/genetics , Middle Aged , Nasopharynx/microbiology , RNA, Ribosomal, 16S/genetics , Viral Load
3.
Nat Commun ; 12(1): 5761, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599177

ABSTRACT

The thymus is a central lymphoid organ primarily responsible for the development of T cells. A small proportion of B cells, however, also reside in the thymus to assist negative selection of self-reactive T cells. Here we show that the thymus of human neonates contains a consistent contingent of CD138+ plasma cells, producing all classes and subclasses of immunoglobulins with the exception of IgD. These antibody-secreting cells are part of a larger subset of B cells that share the expression of signature genes defining mouse B1 cells, yet lack the expression of complement receptors CD21 and CD35. Data from single-cell transcriptomic, clonal correspondence and in vitro differentiation assays support the notion of intrathymic CD138+ plasma cell differentiation, alongside other B cell subsets with distinctive molecular phenotypes. Lastly, neonatal thymic plasma cells also include clones reactive to commensal and pathogenic bacteria that commonly infect children born with antibody deficiency. Thus, our findings point to the thymus as a source of innate humoral immunity in human neonates.


Subject(s)
Cell Differentiation , Plasma Cells/cytology , Thymus Gland/cytology , Adult , Antigens, CD/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , B-Lymphocytes/ultrastructure , Fetal Blood/cytology , Gene Expression Profiling , Humans , Immunity, Innate , Immunoglobulin G/metabolism , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Variable Region/immunology , Infant, Newborn , Lymphocyte Subsets/cytology , Principal Component Analysis , RNA-Seq , Single-Cell Analysis , Somatic Hypermutation, Immunoglobulin/genetics , Transcriptome/genetics
4.
Cell Rep ; 35(9): 109196, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34077733

ABSTRACT

Klebsiella pneumoniae ST258 is a human pathogen associated with poor outcomes worldwide. We identify a member of the acyltransferase superfamily 3 (atf3), enriched within the ST258 clade, that provides a major competitive advantage for the proliferation of these organisms in vivo. Comparison of a wild-type ST258 strain (KP35) and a Δatf3 isogenic mutant generated by CRISPR-Cas9 targeting reveals greater NADH:ubiquinone oxidoreductase transcription and ATP generation, fueled by increased glycolysis. The acquisition of atf3 induces changes in the bacterial acetylome, promoting lysine acetylation of multiple proteins involved in central metabolism, specifically Zwf (glucose-6 phosphate dehydrogenase). The atf3-mediated metabolic boost leads to greater consumption of glucose in the host airway and increased bacterial burden in the lung, independent of cytokine levels and immune cell recruitment. Acquisition of this acyltransferase enhances fitness of a K. pneumoniae ST258 isolate and may contribute to the success of this clonal complex as a healthcare-associated pathogen.


Subject(s)
Acyltransferases/metabolism , Klebsiella Infections/enzymology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/physiology , Respiratory Tract Infections/enzymology , Respiratory Tract Infections/microbiology , Acetylation , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbapenems/pharmacology , Citric Acid Cycle , Gene Deletion , Glucose/metabolism , Glycolysis/drug effects , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/isolation & purification , Lipid A/metabolism , Lung/drug effects , Lung/microbiology , Lung/pathology , Lysine/metabolism , Male , Metabolome/drug effects , Metabolomics , Mice, Inbred C57BL , Phylogeny , Protein Processing, Post-Translational/drug effects
5.
Brain ; 144(9): 2696-2708, 2021 10 22.
Article in English | MEDLINE | ID: mdl-33856027

ABSTRACT

Many patients with SARS-CoV-2 infection develop neurological signs and symptoms; although, to date, little evidence exists that primary infection of the brain is a significant contributing factor. We present the clinical, neuropathological and molecular findings of 41 consecutive patients with SARS-CoV-2 infections who died and underwent autopsy in our medical centre. The mean age was 74 years (38-97 years), 27 patients (66%) were male and 34 (83%) were of Hispanic/Latinx ethnicity. Twenty-four patients (59%) were admitted to the intensive care unit. Hospital-associated complications were common, including eight patients (20%) with deep vein thrombosis/pulmonary embolism, seven (17%) with acute kidney injury requiring dialysis and 10 (24%) with positive blood cultures during admission. Eight (20%) patients died within 24 h of hospital admission, while 11 (27%) died more than 4 weeks after hospital admission. Neuropathological examination of 20-30 areas from each brain revealed hypoxic/ischaemic changes in all brains, both global and focal; large and small infarcts, many of which appeared haemorrhagic; and microglial activation with microglial nodules accompanied by neuronophagia, most prominently in the brainstem. We observed sparse T lymphocyte accumulation in either perivascular regions or in the brain parenchyma. Many brains contained atherosclerosis of large arteries and arteriolosclerosis, although none showed evidence of vasculitis. Eighteen patients (44%) exhibited pathologies of neurodegenerative diseases, which was not unexpected given the age range of our patients. We examined multiple fresh frozen and fixed tissues from 28 brains for the presence of viral RNA and protein, using quantitative reverse-transcriptase PCR, RNAscope® and immunocytochemistry with primers, probes and antibodies directed against the spike and nucleocapsid regions. The PCR analysis revealed low to very low, but detectable, viral RNA levels in the majority of brains, although they were far lower than those in the nasal epithelia. RNAscope® and immunocytochemistry failed to detect viral RNA or protein in brains. Our findings indicate that the levels of detectable virus in coronavirus disease 2019 brains are very low and do not correlate with the histopathological alterations. These findings suggest that microglial activation, microglial nodules and neuronophagia, observed in the majority of brains, do not result from direct viral infection of brain parenchyma, but more likely from systemic inflammation, perhaps with synergistic contribution from hypoxia/ischaemia. Further studies are needed to define whether these pathologies, if present in patients who survive coronavirus disease 2019, might contribute to chronic neurological problems.


Subject(s)
Brain Infarction/pathology , Brain/pathology , COVID-19/pathology , Hypoxia-Ischemia, Brain/pathology , Intracranial Hemorrhages/pathology , Acute Kidney Injury/complications , Acute Kidney Injury/physiopathology , Acute Kidney Injury/therapy , Adult , Aged , Aged, 80 and over , Bacteremia/complications , Brain/metabolism , Brain Infarction/complications , COVID-19/complications , COVID-19/physiopathology , Coronavirus Nucleocapsid Proteins/metabolism , Female , Humans , Hypoxia-Ischemia, Brain/complications , Inflammation , Intensive Care Units , Intracranial Hemorrhages/complications , Male , Microglia/pathology , Middle Aged , Neurons/pathology , Phagocytosis , Phosphoproteins/metabolism , Pulmonary Embolism/complications , Pulmonary Embolism/physiopathology , RNA, Viral/metabolism , Renal Dialysis , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Survival Rate , T-Lymphocytes/pathology , Venous Thrombosis/complications , Venous Thrombosis/physiopathology
6.
Hum Pathol ; 109: 69-79, 2021 03.
Article in English | MEDLINE | ID: mdl-33321162

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was demonstrated in the placenta; however, the data on the prevalence of placental infection and associated histopathology are limited. To identify the frequency and features of SARS-CoV-2 involvement, we performed a clinicopathologic analysis of 75 placental cases from women infected at the time of delivery and 75 uninfected controls. Placental samples were studied with anti-SARS-CoV-2 immunohistochemistry and/or in situ hybridization. Positive results were confirmed by electron microscopy and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). During delivery, only one woman had symptoms of coronavirus disease 2019, six women reported previous symptoms, and 68 women were asymptomatic. All neonates tested negative for SARS-CoV-2 as per nasopharyngeal swab PCR results. Obstetric histories were unremarkable in 29 of 75 SARS-CoV-2-positive and 8 of 75 SARS-CoV-2-negative women. Placental examination was normal in 12 of 75 infected and 3 of 75 uninfected subjects, respectively. In the remaining cases, placental pathology correlated with obstetric comorbidities without significant differences between SARS-CoV-2-positive and SARS-CoV-2-negative women. SARS-CoV-2 was identified in one placenta of an infected, but asymptomatic, parturient. Viral staining was predominantly localized to the syncytiotrophoblast (STB) which demonstrated marked damage accompanied by perivillous fibrin deposition and mixed intervillositis. A significant decrease of viral titers was detected in the attached umbilical cord compared with the villous parenchyma as per qRT-PCR. SARS-CoV-2 is seldom identified in placentas of infected women. Placental involvement by the virus is characterized by STB damage disrupting the placental barrier and can be seen in asymptomatic mothers without evidence of vertical transmission.


Subject(s)
COVID-19/virology , Placenta/pathology , SARS-CoV-2/pathogenicity , Trophoblasts/pathology , Trophoblasts/virology , Adult , Female , Humans , In Situ Hybridization/methods , Placenta/virology , Pregnancy , RNA, Viral , Trophoblasts/chemistry , Viral Load
8.
Open Forum Infect Dis ; 7(11): ofaa501, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33230485

ABSTRACT

BACKGROUND: Assessment of the impact of cerebrospinal fluid (CSF) analysis including investigation for the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for the optimization of patient care. METHODS: In this case series, we review patients diagnosed with SARS-CoV-2 undergoing lumbar puncture (LP) admitted to Columbia University Irving Medical Center (New York, NY, USA) from March 1 to May 26, 2020. In a subset of patients, CSF SARS-CoV-2 quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) testing is performed. RESULTS: The average age of 27 patients who underwent LP with definitive SARS-CoV-2 (SD) was 37.5 (28.7) years. CSF profiles showed elevated white blood cell counts and protein in 44% and 52% of patients, respectively. LP results impacted treatment decisions in 10 (37%) patients, either by change of antibiotics, influence in disposition decision, or by providing an alternative diagnosis. CSF SARS-CoV-2 qRT-PCR was performed on 8 (30%) patients, with negative results in all samples. CONCLUSIONS: Among patients diagnosed with SARS-CoV-2, CSF results changed treatment decisions or disposition in over one-third of our patient cohort. CSF was frequently abnormal, though CSF SARS-CoV-2 qRT-PCR was negative in all samples. Further studies are required to define whether CSF SARS-CoV-2 testing is warranted in certain clinical contexts.

9.
Mod Pathol ; 33(11): 2147-2155, 2020 11.
Article in English | MEDLINE | ID: mdl-32792598

ABSTRACT

The novel coronavirus SARS-CoV-2 (coronavirus disease 19, or COVID-19) primarily causes pulmonary injury, but has been implicated to cause hepatic injury, both by serum markers and histologic evaluation. The histologic pattern of injury has not been completely described. Studies quantifying viral load in the liver are lacking. Here we report the clinical and histologic findings related to the liver in 40 patients who died of complications of COVID-19. A subset of liver tissue blocks were subjected to polymerase chain reaction (PCR) for viral ribonucleic acid (RNA). Peak levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were elevated; median ALT peak 68 U/l (normal up to 46 U/l) and median AST peak 102 U/l (normal up to 37 U/l). Macrovesicular steatosis was the most common finding, involving 30 patients (75%). Mild lobular necroinflammation and portal inflammation were present in 20 cases each (50%). Vascular pathology, including sinusoidal microthrombi, was infrequent, seen in six cases (15%). PCR of liver tissue was positive in 11 of 20 patients tested (55%). In conclusion, we found patients dying of COVID-19 had biochemical evidence of hepatitis (of variable severity) and demonstrated histologic findings of macrovesicular steatosis and mild acute hepatitis (lobular necroinflammation) and mild portal inflammation. We also identified viral RNA in a sizeable subset of liver tissue samples.


Subject(s)
Coronavirus Infections/complications , Liver Diseases/pathology , Liver Diseases/virology , Pneumonia, Viral/complications , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Female , Humans , Male , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL