Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
EMBO J ; 41(19): e110046, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36039850

ABSTRACT

The role of store-operated Ca2+ entry (SOCE) in melanoma metastasis is highly controversial. To address this, we here examined UV-dependent metastasis, revealing a critical role for SOCE suppression in melanoma progression. UV-induced cholesterol biosynthesis was critical for UV-induced SOCE suppression and subsequent metastasis, although SOCE suppression alone was both necessary and sufficient for metastasis to occur. Further, SOCE suppression was responsible for UV-dependent differences in gene expression associated with both increased invasion and reduced glucose metabolism. Functional analyses further established that increased glucose uptake leads to a metabolic shift towards biosynthetic pathways critical for melanoma metastasis. Finally, examination of fresh surgically isolated human melanoma explants revealed cholesterol biosynthesis-dependent reduced SOCE. Invasiveness could be reversed with either cholesterol biosynthesis inhibitors or pharmacological SOCE potentiation. Collectively, we provide evidence that, contrary to current thinking, Ca2+ signals can block invasive behavior, and suppression of these signals promotes invasion and metastasis.


Subject(s)
Calcium Signaling , Melanoma , Calcium/metabolism , Calcium Channels/metabolism , Cholesterol , Glucose , Humans , Melanoma/genetics , Melanoma/metabolism , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism
2.
Int J Mol Sci ; 23(14)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35886964

ABSTRACT

Liposomes and planar membranes made of archaea or archaea-like lipids exhibit many unusual physical properties compared to model membranes composed of conventional diester lipids. Here, we review several recent findings in this research area, which include (1) thermosensitive archaeosomes with the capability to drastically change the membrane surface charge, (2) MthK channel's capability to insert into tightly packed tetraether black lipid membranes and exhibit channel activity with surprisingly high calcium sensitivity, and (3) the intercalation of apolar squalane into the midplane space of diether bilayers to impede proton permeation. We also review the usage of tetraether archaeosomes as nanocarriers of therapeutics and vaccine adjuvants, as well as the biomedical applications of planar archaea lipid membranes. The discussion on archaeosomal therapeutics is focused on partially purified tetraether lipid fractions such as the polar lipid fraction E (PLFE) and glyceryl caldityl tetraether (GCTE), which are the main components of PLFE with the sugar and phosphate removed.


Subject(s)
Archaea , Liposomes , Lipids , Membranes , Protons
3.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884746

ABSTRACT

Bipolar tetraether lipids (BTL) have been long thought to play a critical role in allowing thermoacidophiles to thrive under extreme conditions. In the present study, we demonstrated that not all BTLs from the thermoacidophilic archaeon Sulfolobus acidocaldarius exhibit the same membrane behaviors. We found that free-standing planar membranes (i.e., black lipid membranes, BLM) made of the polar lipid fraction E (PLFE) isolated from S. acidocaldarius formed over a pinhole on a cellulose acetate partition in a dual-chamber Teflon device exhibited remarkable stability showing a virtually constant capacitance (~28 pF) for at least 11 days. PLFE contains exclusively tetraethers. The dominating hydrophobic core of PLFE lipids is glycerol dialky calditol tetraether (GDNT, ~90%), whereas glycerol dialkyl glycerol tetraether (GDGT) is a minor component (~10%). In sharp contrast, BLM made of BTL extracted from microvesicles (Sa-MVs) released from the same cells exhibited a capacitance between 36 and 39 pF lasting for only 8 h before membrane dielectric breakdown. Lipids in Sa-MVs are also exclusively tetraethers; however, the dominating lipid species in Sa-MVs is GDGT (>99%), not GDNT. The remarkable stability of BLMPLFE can be attributed to strong PLFE-PLFE and PLFE-substrate interactions. In addition, we compare voltage-dependent channel activity of calcium-gated potassium channels (MthK) in BLMPLFE to values recorded in BLMSa-MV. MthK is an ion channel isolated from a methanogenic that has been extensively characterized in diester lipid membranes and has been used as a model for calcium-gated potassium channels. We found that MthK can insert into BLMPLFE and exhibit channel activity, but not in BLMSa-MV. Additionally, the opening/closing of the MthK in BLMPLFE is detectable at calcium concentrations as low as 0.1 mM; conversely, in diester lipid membranes at such a low calcium concentration, no MthK channel activity is detectable. The differential effect of membrane stability and MthK channel activity between BLMPLFE and BLMSa-MV may be attributed to their lipid structural differences and thus their abilities to interact with the substrate and membrane protein. Since Sa-MVs that bud off from the plasma membrane are exclusively tetraether lipids but do not contain the main tetraether lipid component GDNT of the plasma membrane, domain segregation must occur in S. acidocaldarius. The implication of this study is that lipid domain formation is existent and functionally essential in all kinds of cells, but domain formation may be even more prevalent and pronounced in hyperthermophiles, as strong domain formation with distinct membrane behaviors is necessary to counteract randomization due to high growth temperatures while BTL in general make archaea cell membranes stable in high temperature and low pH environments whereas different BTL domains play different functional roles.


Subject(s)
Membrane Lipids/chemistry , Membrane Lipids/metabolism , Potassium Channels, Calcium-Activated/metabolism , Sulfolobus acidocaldarius/chemistry , Biophysical Phenomena , Calcium/metabolism , Diglycerides/chemistry , Diglycerides/metabolism , Drug Stability , Ethers/chemistry , Ethers/metabolism , Glycolipids/chemistry , Glycolipids/metabolism , Ion Channel Gating , Molecular Structure , Sulfolobus acidocaldarius/metabolism
4.
Int J Mol Sci ; 21(21)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182284

ABSTRACT

Archaeosomes have drawn increasing attention in recent years as novel nano-carriers for therapeutics. The main obstacle of using archaeosomes for therapeutics delivery has been the lack of an efficient method to trigger the release of entrapped content from the otherwise extremely stable structure. Our present study tackles this long-standing problem. We made hybrid archaeosomes composed of tetraether lipids, called the polar lipid fraction E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius, and the synthetic diester lipid dipalmitoylphosphatidylcholine (DPPC). Differential polarized phase-modulation and steady-state fluorometry, confocal fluorescence microscopy, zeta potential (ZP) measurements, and biochemical assays were employed to characterize the physical properties and drug behaviors in PLFE/DPPC hybrid archaeosomes in the presence and absence of live cells. We found that PLFE lipids have an ordering effect on fluid DPPC liposomal membranes, which can slow down the release of entrapped drugs, while PLFE provides high negative charges on the outer surface of liposomes, which can increase vesicle stability against coalescence among liposomes or with cells. Furthermore, we found that the zeta potential in hybrid archaeosomes with 30 mol% PLFE and 70 mol% DPPC (designated as PLFE/DPPC(3:7) archaeosomes) undergoes an abrupt increase from -48 mV at 37 °C to -16 mV at 44 °C (termed the ZP transition), which we hypothesize results from DPPC domain melting and PLFE lipid 'flip-flop'. The anticancer drug doxorubicin (DXO) can be readily incorporated into PLFE/DPPC(3:7) archaeosomes. The rate constant of DXO release from PLFE/DPPC(3:7) archaeosomes into Tris buffer exhibited a sharp increase (~2.5 times), when the temperature was raised from 37 to 42 °C, which is believed to result from the liposomal structural changes associated with the ZP transition. This thermo-induced sharp increase in drug release was not affected by serum proteins as a similar temperature dependence of drug release kinetics was observed in human blood serum. A 15-min pre-incubation of PLFE/DPPC(3:7) archaeosomal DXO with MCF-7 breast cancer cells at 42 °C caused a significant increase in the amount of DXO entering into the nuclei and a considerable increase in the cell's cytotoxicity under the 37 °C growth temperature. Taken together, our data suggests that PLFE/DPPC(3:7) archaeosomes are stable yet potentially useful thermo-sensitive liposomes wherein the temperature range (from 37 to 42-44 °C) clinically used for mild hyperthermia treatment of tumors can be used to trigger drug release for medical interventions.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Delayed-Action Preparations/chemistry , Drug Carriers/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Sulfolobus acidocaldarius/chemistry , Cell Line, Tumor , Doxorubicin/chemistry , Humans , Kinetics , Liposomes/chemistry , MCF-7 Cells , Temperature
5.
Int J Mol Sci ; 20(21)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31731418

ABSTRACT

In this study, we used optical spectroscopy to characterize the physical properties of microvesicles released from the thermoacidophilic archaeon Sulfolobus acidocaldarius (Sa-MVs). The most abundant proteins in Sa-MVs are the S-layer proteins, which self-assemble on the vesicle surface forming an array of crystalline structures. Lipids in Sa-MVs are exclusively bipolar tetraethers. We found that when excited at 275 nm, intrinsic protein fluorescence of Sa-MVs at 23 °C has an emission maximum at 303 nm (or 296 nm measured at 75 °C), which is unusually low for protein samples containing multiple tryptophans and tyrosines. In the presence of 10-11 mM of the surfactant n-tetradecyl-ß-d-maltoside (TDM), Sa-MVs were disintegrated, the emission maximum of intrinsic protein fluorescence was shifted to 312 nm, and the excitation maximum was changed from 288 nm to 280.5 nm, in conjunction with a significant decrease (>2 times) in excitation band sharpness. These data suggest that most of the fluorescent amino acid residues in native Sa-MVs are in a tightly packed protein matrix and that the S-layer proteins may form J-aggregates. The membranes in Sa-MVs, as well as those of unilamellar vesicles (LUVs) made of the polar lipid fraction E (PLFE) tetraether lipids isolated from S. acidocaldarius (LUVPLFE), LUVs reconstituted from the tetraether lipids extracted from Sa-MVs (LUVMV) and LUVs made of the diester lipids, were investigated using the probe 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan). The generalized polarization (GP) values of Laurdan in tightly packed Sa-MVs, LUVMV, and LUVPLFE were found to be much lower than those obtained from less tightly packed DPPC gel state, which echoes the previous finding that the GP values from tetraether lipid membranes cannot be directly compared with the GP values from diester lipid membranes, due to differences in probe disposition. Laurdan's GP and red-edge excitation shift (REES) values in Sa-MVs and LUVMV decrease with increasing temperature monotonically with no sign for lipid phase transition. Laurdan's REES values are high (9.3-18.9 nm) in the tetraether lipid membrane systems (i.e., Sa-MVs, LUVMV and LUVPLFE) and low (0.4-5.0 nm) in diester liposomes. The high REES and low GP values suggest that Laurdan in tetraether lipid membranes, especially in the membrane of Sa-MVs, is in a very motionally restricted environment, bound water molecules and the polar moieties in the tetraether lipid headgroups strongly interact with Laurdan's excited state dipole moment, and "solvent" reorientation around Laurdan's chromophore in tetraether lipid membranes occurs very slowly compared to Laurdan's lifetime.


Subject(s)
Membrane Lipids/chemistry , Sulfolobus acidocaldarius/chemistry , Spectrum Analysis
6.
Int J Mol Sci ; 19(11)2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30469389

ABSTRACT

When using small mole fraction increments to study gramicidins in phospholipid membranes, we found that the phasor dots of intrinsic fluorescence of gramicidin D and gramicidin A in dimyristoyl-sn-glycero-3-phosphocholine (DMPC) unilamellar and multilamellar vesicles exhibit a biphasic change with peptide content at 0.143 gramicidin mole fraction. To understand this phenomenon, we developed a statistical mechanical model of gramicidin/DMPC mixtures. Our model assumes a sludge-like mixture of fluid phase and aggregates of rigid clusters. In the fluid phase, gramicidin monomers are randomly distributed. A rigid cluster is formed by a gramicidin dimer and DMPC molecules that are condensed to the dimer, following particular stoichiometries (critical gramicidin mole fractions, Xcr including 0.143). Rigid clusters form aggregates in which gramicidin dimers are regularly distributed, in some cases, even to superlattices. At Xcr, the size of cluster aggregates and regular distributions reach a local maximum. Before a similar model was developed for cholesterol/DMPC mixtures (Sugar and Chong (2012) J. Am. Chem. Soc. 134, 1164⁻1171) and here the similarities and differences are discussed between these two models.


Subject(s)
Gramicidin/chemistry , Lipid Bilayers/chemistry , Models, Theoretical , Dimyristoylphosphatidylcholine/chemistry , Mechanical Phenomena , Spectrometry, Fluorescence
7.
Mol Pharm ; 14(1): 147-156, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28043132

ABSTRACT

Here we used a lipid-soluble Zn(II)-bis-dipicolylamine derivative as a membrane component to develop liposomal carriers that have potential to be targeted to phosphatidylserine (PS) rich surfaces on cancer cells and to preferentially kill cancer cells without using anticancer drugs. This DPA derivative (abbreviated as DPA-Cy3[22,22]) contains the fluorophore cyanine 3 (Cy3) and two 22-carbon chains that can be anchored into liposomal membrane bilayers. DPA-Cy3[22,22]/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) unilamellar vesicles (∼150 nm) showed selective binding to PS-containing liposomes as demonstrated by anion exchange chromatography. This binding does not result in vesicle fusion or aggregation. Flow cytometry showed that DPA-Cy3[22,22]/POPC liposomes have preferential binding to MCF-7 breast cancer cells over MCF-12A noncancer cells due to 3-7 times more PS exposures on MCF-7. The extent of liposome binding with MCF-7 cells was increased by two times after cells were pretreated with the apoptotic inducer camptothecin, which increased PS exposure to the cell surface. Moreover, our flow cytometry data also suggest that local cell membrane perturbations may occur upon liposome binding and internalization. This implies that DPA-Cy3[22,22]/POPC liposomes alone may have a PS-dependent cytotoxic effect. This assertion was supported by the cell proliferation assay, which showed that 9.1 mol % DPA-Cy3[22,22]/POPC liposomes exert cytotoxicity on MCF-7 cells 3.5 times higher than that on MCF-12A cells. These results indicate that DPA-Cy3[22,22]-containing liposomes hold great promise as efficient nano drug carriers.


Subject(s)
Amines/administration & dosage , Amines/chemistry , Cell Membrane/drug effects , Liposomes/chemistry , Neoplasms/drug therapy , Phosphatidylserines/metabolism , Picolinic Acids/administration & dosage , Picolinic Acids/chemistry , Zinc/chemistry , Anions/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Carriers/chemistry , Humans , Lipid Bilayers/chemistry , Liposomes/administration & dosage , MCF-7 Cells , Membrane Fusion/drug effects , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Phosphatidylcholines/chemistry , Unilamellar Liposomes/chemistry , Zinc/administration & dosage
8.
Langmuir ; 31(42): 11591-7, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26445271

ABSTRACT

The lipid composition of archaea is unique and has been correlated with increased stability under extreme environmental conditions. In this article, we have focused on the evolution of membrane organization and dynamics with natural evolution. Dynamic anisotropy along the membrane normal (i.e., gradients of mobility, polarity, and heterogeneity) is a hallmark of fluid phase diester or diether phospholipid membranes. We monitored gradients of mobility, polarity, and heterogeneity along the membrane normal in membranes made of a representative archaeal lipid using a series of membrane depth-dependent fluorescent probes, and compared them to membranes prepared from a typical diether lipid from higher organisms (eukaryotes). Our results show that the representative dynamic anisotropy gradient along the membrane normal is absent in membranes made from archaeal lipids. We hypothesize that the dynamic gradient observed in membranes of diester and diether phospholipids is a consequence of natural evolution of membrane lipids in response to the requirement of carrying out complex cellular functions by membrane proteins.


Subject(s)
Archaea/chemistry , Membrane Lipids/chemistry , Anisotropy
9.
Mol Pharm ; 12(10): 3724-34, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26355665

ABSTRACT

Combretastatin A4 disodium phosphate (CA4P) is a fluorescent, water-soluble prodrug able to induce vascular shutdown within tumors at doses less than one-tenth of the maximum tolerated dose. As a continued effort to develop efficient liposomal CA4P to treat solid tumor, we herein investigate the physical and spectroscopic properties of CA4P in aqueous solution and the mechanism of CA4P release from archaeal tetraether liposomes (archaeosomes). We found that cis-CA4P can be photoisomerized to trans-CA4P. This photoisomerization results in an increase in fluorescence intensity. Both cis- and trans-CA4P undergo fluorescence intensity self-quenching after they reach a critical concentration Cq (∼0.15-0.25 mM). Moreover, both cis- and trans-CA4P in buffer exhibit a red shift in their excitation spectrum and an increase in excitation spectrum band sharpness with increasing concentration, which can be attributed to the formation of J-aggregates. The onset of the dramatic change in excitation maximum occurs at concentrations close to Cq, suggesting that the self-quenching arises from extensive J-aggregate formation and that, when CA4P concentration exceeds Cq, J-aggregate formation begins to increase sharply. Our data also suggest that the extent of J-aggregate formation plays a critical role in CA4P release from tetraether archaeosomes and in the subsequent cytotoxicity on cultured human breast cancer MCF-7 cells. The drug leakage and cytotoxicity rate constants vary with the initial CA4P concentration entrapped inside archaeosomes in a biphasic manner, reaching a local maximum at 0.25-0.50 mM. A mechanism based on the concept of J-aggregate formation has been proposed to explain the biphasic changes in drug release and cytotoxicity with increasing drug concentration. Tetraether archaeosomes are extraordinarily stable and relatively nontoxic to animals; thus, they are promising nano drug carriers. The results obtained from this study pave the way for future development of archaeosomal CA4P to treat solid tumors.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacokinetics , Liposomes/metabolism , MCF-7 Cells/drug effects , Stilbenes/pharmacokinetics , Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/drug therapy , Drug Delivery Systems/methods , Female , Fluorescent Dyes/metabolism , Humans , MCF-7 Cells/metabolism , Stilbenes/pharmacology
10.
Appl Biochem Biotechnol ; 177(1): 105-17, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26170084

ABSTRACT

The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 µg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.


Subject(s)
Glucose/biosynthesis , Photosynthesis , Plant Proteins/metabolism , Adenosine Triphosphate/metabolism , Bacteriorhodopsins/metabolism , Glyceraldehyde 3-Phosphate/metabolism , Light , Mitochondrial Proton-Translocating ATPases/metabolism , Photosynthesis/radiation effects , Proton Pumps , Ribulosephosphates/metabolism , Temperature
11.
ACS Appl Mater Interfaces ; 6(15): 12618-28, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-24937508

ABSTRACT

The polar lipid fraction E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius contains exclusively bipolar tetraether lipids, which are able to form extraordinarily stable vesicular membranes against a number of chemical, physical, and mechanical stressors. PLFE liposomes have thus been considered appealing biomaterials holding great promise for biotechnology applications such as drug delivery and biosensing. Here we demonstrated that PLFE can also form free-standing "planar" membranes on micropores (∼100 µm) of polydimethylsiloxane (PDMS) thin films embedded in printed circuit board (PCB)-based fluidics. To build this device, two novel approaches were employed: (i) an S1813 sacrificial layer was used to facilitate the fabrication of the PDMS thin film, and (ii) oxygen plasma treatment was utilized to conveniently bond the PDMS thin film to the PCB board and the PDMS fluidic chamber. Using electrochemical impedance spectroscopy, we found that the dielectric properties of PLFE planar membranes suspended on the PDMS films are distinctly different from those obtained from diester lipid and triblock copolymer membranes. In addition to resistance (R) and capacitance (C) that were commonly seen in all the membranes examined, PLFE planar membranes showed an inductance (L) component. Furthermore, PLFE planar membranes displayed a relatively large membrane resistance, suggesting that, among the membranes examined, PLFE planar membrane would be a better matrix for studying channel proteins and transmembrane events. PLFE planar membranes also exhibited a sharp decrease in phase angle with the frequency of the input AC signal at ∼1 MHz, which could be utilized to develop sensors for monitoring PLFE membrane integrity in fluidics. Since the stability of free-standing planar lipid membranes increases with increasing membrane packing tightness and PLFE lipid membranes are more tightly packed than those made of diester lipids, PLFE free-standing planar membranes are expected to be considerably stable. All these salient features make PLFE planar membranes particularly attractive for model studies of channel proteins and transmembrane events and for high-throughput drug screening and artificial photosynthesis. This work can be extended to nanopores of PDMS thin films in microfluidics and eventually aid in membrane-based new lab-on-a-chip applications.


Subject(s)
Dimethylpolysiloxanes/chemistry , Electronics , Ethers/chemistry , Lipid Bilayers/chemistry , Microfluidics/methods , Sulfolobus acidocaldarius/chemistry , Dielectric Spectroscopy , Electricity , Printing, Three-Dimensional
12.
Chem Phys Lipids ; 180: 61-71, 2014 May.
Article in English | MEDLINE | ID: mdl-24613478

ABSTRACT

GWE1 strain is an example of anthropogenic thermophilic bacterium, recently isolated from dark crusty material from sterilization ovens by Correa-Llantén et al. (Kor. J. Microb. Biotechnol. 2013. 41(3):278-283). Thermostability is likely to arise from the adaptation of macromolecules such as proteins, lipids and nucleic acids. Complex lipid arrangement and/or type in the cell membrane are known to affect thermostability of microorganisms and efforts were made to understand the chemical nature of the polar lipids of membrane. In this work, we extracted total lipids from GWE1 cell membrane, separated them by TLC into various fractions and characterize the lipid structures of certain fractions with analytical tools such as (1)H, (13)C, (31)P and 2D NMR spectroscopy, ATR-FTIR spectroscopy and MS(n) spectrometry. We were able to identify glycerophosphoethanolamine, glycerophosphate, glycerophosphocholine, glycerophosphoglycerol and cardiolipin lipid classes and an unknown glycerophospholipid class with novel MS/MS spectra pattern. We have also noticed the presence of saturated iso-branched fatty acids with NMR spectra in individual lipid classes.


Subject(s)
Desiccation , Geobacillus/chemistry , Geobacillus/isolation & purification , Hot Temperature , Lipids/analysis , Lipids/chemistry , Sterilization , Animals , Cell Membrane/chemistry , Geobacillus/cytology , Geobacillus/radiation effects , Glycerol/chemistry , Phospholipids/chemistry
13.
Mol Biol Cell ; 24(15): 2319-27, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23761076

ABSTRACT

The endosomal-sorting complex required for transport (ESCRT) is evolutionarily conserved from Archaea to eukaryotes. The complex drives membrane scission events in a range of processes, including cytokinesis in Metazoa and some Archaea. CdvA is the protein in Archaea that recruits ESCRT-III to the membrane. Using electron cryotomography (ECT), we find that CdvA polymerizes into helical filaments wrapped around liposomes. ESCRT-III proteins are responsible for the cinching of membranes and have been shown to assemble into helical tubes in vitro, but here we show that they also can form nested tubes and nested cones, which reveal surprisingly numerous and versatile contacts. To observe the ESCRT-CdvA complex in a physiological context, we used ECT to image the archaeon Sulfolobus acidocaldarius and observed a distinct protein belt at the leading edge of constriction furrows in dividing cells. The known dimensions of ESCRT-III proteins constrain their possible orientations within each of these structures and point to the involvement of spiraling filaments in membrane scission.


Subject(s)
Archaeal Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Sulfolobus/growth & development , Archaeal Proteins/ultrastructure , Cell Membrane/physiology , Cryoelectron Microscopy , Cytokinesis , Electron Microscope Tomography , Endosomal Sorting Complexes Required for Transport/ultrastructure , Sulfolobus/metabolism , Sulfolobus/ultrastructure
14.
Archaea ; 2012: 138439, 2012.
Article in English | MEDLINE | ID: mdl-23028246

ABSTRACT

This paper reviews the recent findings related to the physical properties of tetraether lipid membranes, with special attention to the effects of the number, position, and configuration of cyclopentane rings on membrane properties. We discuss the findings obtained from liposomes and monolayers, composed of naturally occurring archaeal tetraether lipids and synthetic tetraethers as well as the results from computer simulations. It appears that the number, position, and stereochemistry of cyclopentane rings in the dibiphytanyl chains of tetraether lipids have significant influence on packing tightness, lipid conformation, membrane thickness and organization, and headgroup hydration/orientation.


Subject(s)
Lipids/chemistry , Liposomes/chemistry , Membranes/chemistry , Cyclopentanes/analysis , Molecular Structure
15.
Biophys J ; 102(9): 2086-94, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22824272

ABSTRACT

Liposomal drugs are a useful alternative to conventional drugs and hold great promise for targeted delivery in the treatment of many diseases. Most of the liposomal drugs on the market or under clinical trials include cholesterol as a membrane stabilizing agent. Here, we used liposomal CA4P, an antivascular drug, to demonstrate that cholesterol content can actually modulate the release and cytotoxicity of liposomal drugs in a delicate and predictable manner. We found that both the rate of the CA4P release from the interior aqueous compartment of the liposomes to the bulk aqueous phase and the extent of the drug's cytotoxicity undergo a biphasic variation, as large as 50%, with liposomal cholesterol content at the theoretically predicted C(r), e.g., 22.0, 22.2, 25.0, 33.3, 40.0, and 50.0 mol % cholesterol for maximal superlattice formation. It appears that at C(r), CA4P can be released from the liposomes more readily than at non-C(r), probably due to the increased domain boundaries between superlattice and nonsuperlattice regions, which consequently results in increased cytotoxicity. The idea that the increased domain boundaries at C(r) would facilitate the escape of molecules from membranes was further supported by the data of dehydroergosterol transfer from liposomes to MßCD. These results together show that the functional importance of sterol superlattice formation in liposomes can be propagated to distal targeted cells and reveal a new, to our knowledge, mechanism for how sterol content and membrane lateral organization can control the release of entrapped or embedded molecules in membranes.


Subject(s)
Breast Neoplasms/pathology , Breast Neoplasms/physiopathology , Delayed-Action Preparations/chemistry , Liposomes/chemistry , Stilbenes/administration & dosage , Stilbenes/chemistry , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Survival , Diffusion , Drug Compounding/methods , Female , Humans
16.
Langmuir ; 28(11): 5211-7, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22352806

ABSTRACT

The polar lipid fraction E (PLFE) is a major tetraether lipid component in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Using differential scanning and pressure perturbation calorimetry as well as ultrasound velocity and density measurements, we have determined the compressibilities and volume fluctuations of PLFE liposomes derived from different cell growth temperatures (T(g) = 68, 76, and 81 °C). The compressibility and volume fluctuation values of PLFE liposomes, which are substantially less than those detected from diester lipid membranes (e.g., DPPC), exhibit small but significant differences with T(g). Among the three T(g)s employed, 76 °C leads to the least compressible and most tightly packed PLFE membranes. This temperature is within the range for optimal cell growth (75-80 °C). It is known that a decrease in T(g) decreases the number of cyclopentane rings in archael tetraether lipids. Thus, our data enable us to present the new view that membrane packing in PLFE liposomes varies with the number of cyclopentane rings in a nonlinear manner, reaching maximal tightness when the tetraether lipids are derived from cells grown at optimal T(g)s. In addition, we have studied the effects of pressure on total layer thickness, d, and neutron scattering length density, ρ(n), of a silicon-D(2)O interface that is covered with a PLFE membrane using neutron reflectometry (NR). At 55 °C, d and ρ(n) are found to be rather insensitive to pressure up to 1800 bar, suggesting minor changes of the thickness of the membrane's hydrophobic core and headgroup orientation upon compression only.


Subject(s)
Archaea/chemistry , Calorimetry, Differential Scanning/methods , Cell Division , Hot Temperature , Membrane Lipids/chemistry , Acoustics , Liposomes , Neutrons
17.
Archaea ; 2012: 710836, 2012.
Article in English | MEDLINE | ID: mdl-23304073
18.
Langmuir ; 27(21): 13113-21, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21910469

ABSTRACT

We report X-ray reflectivity (XRR) and grazing incidence X-ray diffraction (GIXD) measurements of archaeal bipolar tetraether lipid monolayers at the air-water interface. Specifically, Langmuir films made of the polar lipid fraction E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius grown at three different temperatures, i.e., 68, 76, and 81 °C, were examined. The dependence of the structure and packing properties of PLFE monolayers on surface pressure were analyzed in a temperature range between 10 and 50 °C at different pH values. Additionally, the interaction of PLFE monolayers (using lipids derived from cells grown at 76 °C) with the ion channel peptide gramicidin was investigated as a function of surface pressure. A total monolayer thickness of approximately 30 Å was found for all monolayers, hinting at a U-shaped conformation of the molecules with both head groups in contact with the interface. The monolayer thickness increased with rising film pressure and decreased with increasing temperature. At 10 and 20 °C, large, highly crystalline domains were observed by GIXD, whereas at higher temperatures no distinct crystallinity could be observed. For lipids derived from cells grown at higher temperatures, a slightly more rigid structure in the lipid dibiphytanyl chains was observed. A change in the pH of the subphase had an influence only on the structure of the lipid head groups. The addition of gramicidin to an PLFE monolayer led to a more disordered state as observed by XRR. In GIXD measurements, no major changes in lateral organization could be observed, except for a decrease of the size of crystalline domains, indicating that gramicidin resides mainly in the disordered areas of the monolayer and causes local membrane perturbation, only.


Subject(s)
Lipids/chemistry , Sulfolobus/chemistry , Air , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Proliferation , Gramicidin/metabolism , Hydrogen-Ion Concentration , Lipid Metabolism , Sulfolobus/cytology , Surface Properties , Temperature , Water/chemistry , X-Ray Diffraction
19.
Mol Cell ; 41(2): 186-96, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21255729

ABSTRACT

Members of the crenarchaeal kingdom, such as Sulfolobus, divide by binary fission yet lack genes for the otherwise near-ubiquitous tubulin and actin superfamilies of cytoskeletal proteins. Recent work has established that Sulfolobus homologs of the eukaryotic ESCRT-III and Vps4 components of the ESCRT machinery play an important role in Sulfolobus cell division. In eukaryotes, several pathways recruit ESCRT-III proteins to their sites of action. However, the positioning determinants for archaeal ESCRT-III are not known. Here, we identify a protein, CdvA, that is responsible for recruiting Sulfolobus ESCRT-III to membranes. Overexpression of the isolated ESCRT-III domain that interacts with CdvA results in the generation of nucleoid-free cells. Furthermore, CdvA and ESCRT-III synergize to deform archaeal membranes in vitro. The structure of the CdvA/ESCRT-III interface gives insight into the evolution of the more complex and modular eukaryotic ESCRT complex.


Subject(s)
Archaeal Proteins/physiology , Endosomal Sorting Complexes Required for Transport/physiology , Sulfolobus/cytology , Archaeal Proteins/analysis , Archaeal Proteins/chemistry , Endosomal Sorting Complexes Required for Transport/analysis , Endosomal Sorting Complexes Required for Transport/chemistry , Gene Expression Regulation, Archaeal , Liposomes/metabolism , Open Reading Frames , Protein Structure, Tertiary , Transcription, Genetic
20.
Biophys J ; 99(10): 3319-26, 2010 Nov 17.
Article in English | MEDLINE | ID: mdl-21081080

ABSTRACT

Bipolar tetraether lipids (BTLs) are abundant in crenarchaeota, which thrive in both thermophilic and nonthermophilic environments, with wide-ranging growth temperatures (4-108°C). BTL liposomes can serve as membrane models to explore the role of BTLs in the thermal stability of the plasma membrane of crenarchaeota. In this study, we focus on the liposomes made of the polar lipid fraction E (PLFE). PLFE is one of the main BTLs isolated from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Using molecular acoustics (ultrasound velocimetry and densimetry), pressure perturbation calorimetry, and differential scanning calorimetry, we have determined partial specific adiabatic and isothermal compressibility, their respective compressibility coefficients, partial specific volume, and relative volume fluctuations of PLFE large unilamellar vesicles (LUVs) over a wide range of temperatures (20-85°C). The results are compared with those obtained from liposomes made of dipalmitoyl-L-α-phosphatidylcholine (DPPC), a conventional monopolar diester lipid. We found that, in the entire temperature range examined, compressibilities of PLFE LUVs are low, comparable to those found in gel state of DPPC. Relative volume fluctuations of PLFE LUVs at any given temperature examined are 1.6-2.2 times more damped than those found in DPPC LUVs. Both compressibilities and relative volume fluctuations in PLFE LUVs are much less temperature-sensitive than those in DPPC liposomes. The isothermal compressibility coefficient (ß(T)(lipid)) of PLFE LUVs changes from 3.59 × 10(-10) Pa(-1) at 25°C to 4.08 × 10(-10) Pa(-1) at 78°C. Volume fluctuations of PLFE LUVs change only 0.25% from 30°C to 80°C. The highly damped volume fluctuations and their low temperature sensitivity, echo that PLFE liposomes are rigid and tightly packed. To our knowledge, the data provide a deeper understanding of lipid packing in PLFE liposomes than has been previously reported, as well as a molecular explanation for the low solute permeation and limited membrane lateral motion. The obtained results may help to establish new strategies for rational design of stable BTL-based liposomes for drug/vaccine delivery.


Subject(s)
Ether/chemistry , Liposomes/chemistry , Sulfolobus acidocaldarius/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Biomechanical Phenomena/physiology , Temperature , Ultrasonics
SELECTION OF CITATIONS
SEARCH DETAIL
...