Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Expert Rev Vaccines ; 12(5): 537-54, 2013 May.
Article in English | MEDLINE | ID: mdl-23659301

ABSTRACT

The human body has developed an elaborate defense system against microbial pathogens and foreign antigens. However, particular microbes have evolved sophisticated mechanisms to evade immune surveillance, allowing persistence within the human host. In an effort to combat such infections, intensive research has focused on the development of effective prophylactic and therapeutic countermeasures to suppress or clear persistent viral infections. To date, popular therapeutic strategies have included the use of live-attenuated microbes, viral vectors and dendritic-cell vaccines aiming to help suppress or clear infection. In recent years, improved DNA vaccines have now re-emerged as a promising candidate for therapeutic intervention due to the development of advanced optimization and delivery technologies. For instance, genetic optimization of synthetic plasmid constructs and their encoded antigens, in vivo electroporation-mediated vaccine delivery, as well as codelivery with molecular adjuvants have collectively enhanced both transgene expression and the elicitation of vaccine-induced immunity. In addition, the development of potent heterologous prime-boost regimens has also provided significant contributions to DNA vaccine immunogenicity. Herein, the authors will focus on these recent improvements to this synthetic platform in relation to their application in combating persistent virus infection.


Subject(s)
DNA/immunology , Viral Vaccines/immunology , Virus Diseases/immunology , Virus Diseases/prevention & control , Adjuvants, Immunologic/administration & dosage , Antigens, Viral/genetics , Antigens, Viral/immunology , Chronic Disease , DNA/administration & dosage , DNA/genetics , Drug Discovery/trends , Electroporation , Humans , Plasmids , Vaccination/methods , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
2.
J Immunol ; 187(6): 2932-43, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21856939

ABSTRACT

Recent evidence demonstrates that HIV-1 infection leads to the attenuation of cellular immune responses, which has been correlated with the increased expression of programmed death (PD)-1 on virus-specific CD8(+) T cells. PD-1 is induced upon T cell activation, and its prolonged expression facilitates CD8(+) T cell inhibitory signals when bound to its B7 family ligands, PD-ligand (L)1/2, which are expressed on APCs. Importantly, early reports demonstrated that blockade of the PD-1/PD-L interaction by Abs may help to counter the development of immune exhaustion driven by HIV viral persistence. To better understand the regulation of the PD-1 pathway during HIV infection, we examined the ability of the virus to induce PD-L expression on macrophages and dendritic cells. We found a direct relationship between the infection of APCs and the expression of PD-L1 in which virus-mediated upregulation induced a state of nonresponsiveness in uninfected HIV-specific T cells. Furthermore, this exhaustion phenotype was revitalized by the blockade of PD-L1, after which T cells regained their capacity for proliferation and the secretion of proinflammatory cytokines IFN-γ, IL-2, and IL-12 upon restimulation. In addition, we identify a critical role for the PI3K/serine-threonine kinase signaling pathway in PD-L1 upregulation of APCs by HIV, because inhibition of these intracellular signal transducer enzymes significantly reduced PD-L1 induction by infection. These data identify a novel mechanism by which HIV exploits the immunosuppressive PD-1 pathway and suggest a new role for virus-infected cells in the local corruption of immune responses required for viral suppression.


Subject(s)
Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , Lymphocyte Activation/immunology , Signal Transduction/immunology , Antigen-Presenting Cells/metabolism , Antigens, CD/biosynthesis , Antigens, CD/immunology , Apoptosis Regulatory Proteins/biosynthesis , Apoptosis Regulatory Proteins/immunology , Blotting, Western , CD8-Positive T-Lymphocytes/metabolism , Cell Separation , Enzyme Activation/immunology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , HIV Infections/metabolism , HIV-1/immunology , Humans , Ligands , Phosphatidylinositol 3-Kinases/immunology , Phosphatidylinositol 3-Kinases/metabolism , Programmed Cell Death 1 Receptor , Protein Serine-Threonine Kinases/immunology , Protein Serine-Threonine Kinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
3.
J Immunol ; 185(6): 3436-44, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20733203

ABSTRACT

Memory CD8 T cells persist by Ag-independent homeostatic proliferation. To examine the dynamics of this cell turnover, we transferred lymphocytic choriomeningitis virus specific memory CD8 T cells into naive mice and analyzed their in vivo division kinetics longitudinally in individual recipients.Using mathematical modeling, we determined that proliferation of this stably maintained memory CD8 T cell population was homogeneous and stochastic with a small fraction of cells completing division at any given time with an intermitotic interval of 50 d. This homeostatic turnover was comparable between memory CD8 T cells of different viral epitope specificities and also the total memory phenotype (CD44(high)) CD8 T cells. It is well established that CD4 T cell help is critical for maintenance of CD8 T cells during chronic infections, but recent studies have suggested that CD4 T cell help is also required for maintenance of memory CD8 T cells following acute infections. Hence, we assessed the role of CD4 T cells in Ag-independent maintenance of memory CD8 T cells. Consistent with previous reports, we found that memory CD8 T cells declined when transferred into MHC class II-deficient mice. However, their numbers were maintained stably when transferred into CD4 T cell-deficient mice. Interestingly, their homeostatic proliferation, ability to make recall responses, and phenotype were independent of CD4 T cell help because none of these qualities were affected when memory CD8 T cells were transferred and maintained in either MHC class II- or CD4-deficient recipients.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Epitopes, T-Lymphocyte/immunology , Homeostasis/immunology , Immunologic Memory , Lymphocytic choriomeningitis virus/immunology , Acute Disease , Animals , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/transplantation , Cell Division/immunology , Cell Proliferation , Chronic Disease , Female , Longitudinal Studies , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/pathology , Lymphocytic Choriomeningitis/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
5.
J Immunol ; 175(1): 112-23, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15972637

ABSTRACT

DNA vaccines are a promising technology for the induction of Ag-specific immune responses, and much recent attention has gone into improving their immune potency. In this study we test the feasibility of delivering a plasmid encoding IL-15 as a DNA vaccine adjuvant for the induction of improved Ag-specific CD8(+) T cellular immune responses. Because native IL-15 is poorly expressed, we used PCR-based strategies to develop an optimized construct that expresses 80-fold higher than the native IL-15 construct. Using a DNA vaccination model, we determined that immunization with optimized IL-15 in combination with HIV-1gag DNA constructs resulted in a significant enhancement of Ag-specific CD8(+) T cell proliferation and IFN-gamma secretion, and strong induction of long-lived CD8(+) T cell responses. In an influenza DNA vaccine model, coimmunization with plasmid expressing influenza A PR8/34 hemagglutinin with the optimized IL-15 plasmid generated improved long term CD8(+) T cellular immunity and protected the mice against a lethal mucosal challenge with influenza virus. Because we observed that IL-15 appeared to mostly adjuvant CD8(+) T cell function, we show that in the partial, but not total, absence of CD4(+) T cell help, plasmid-delivered IL-15 could restore CD8 secondary immune responses to an antigenic DNA plasmid, supporting the idea that the effects of IL-15 on CD8(+) T cell expansion require the presence of low levels of CD4 T cells. These data suggest a role for enhanced plasmid IL-15 as a candidate adjuvant for vaccine or immunotherapeutic studies.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Interleukin-15/genetics , Interleukin-15/immunology , AIDS Vaccines/genetics , AIDS Vaccines/immunology , AIDS Vaccines/pharmacology , Amino Acid Sequence , Animals , Base Sequence , Cell Proliferation , Cellular Senescence , Cloning, Molecular , Female , Genetic Vectors , HeLa Cells , Humans , Immunization , Immunologic Memory , In Vitro Techniques , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza Vaccines/pharmacology , Interferon-gamma/biosynthesis , Lymphocyte Activation , Lymphocyte Cooperation , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Plasmids , Transfection , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology
6.
Emerg Infect Dis ; 8(12): 1379-84, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12498651

ABSTRACT

West Nile virus (WNV) is a member of the Flaviviridae family of vector-borne pathogens. Clinical signs of WNV infection include neurologic symptoms, limb weakness, and encephalitis, which can result in paralysis or death. We report that the WNV-capsid by itself induces rapid nuclear condensation and cell death in tissue culture. Apoptosis is induced through the mitochondrial pathway resulting in caspase-9 activation and downstream caspase-3 activation. Capsid gene delivery into the striatum of mouse brain or interskeletal muscle resulted in cell death and inflammation, likely through capsid-induced apoptosis in vivo. These studies demonstrate that the capsid protein of WNV may be responsible for aspects of viral pathogenesis through induction of the apoptotic cascade.


Subject(s)
Capsid Proteins/physiology , Caspases/physiology , West Nile virus/pathogenicity , Animals , Apoptosis , Brain/virology , Capsid Proteins/genetics , Caspase 9 , Female , Mice , Mice, Inbred BALB C , West Nile Fever/etiology , West Nile virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL