Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Methods Mol Biol ; 2644: 133-154, 2023.
Article in English | MEDLINE | ID: mdl-37142920

ABSTRACT

Microelectrode array (MEA) technology is a neurophysiological method that allows for the measurement of spontaneous or evoked neural activity to determine chemical effects thereon. Following assessment of compound effects on multiple endpoints that evaluate network function, a cell viability endpoint in the same well is determined using a multiplexed approach. Recently, it has become possible to measure electrical impedance of cells attached to the electrodes, where greater impedance indicates greater number of cells attached. This would allow rapid and repeated assessments of cell health as the neural network develops in longer exposure assays without impacting cell health. Typically, the lactate dehydrogenase (LDH) assay for cytotoxity and CellTiter-Blue® (CTB) assay for cell viability are only performed at the end of the chemical exposure period because these assays involve lysing of the cells. Procedures describing the multiplexed methods in acute and network formation screening are included in this chapter.


Subject(s)
L-Lactate Dehydrogenase , Neurons , Microelectrodes , Cell Survival , Nerve Net
2.
Chem Res Toxicol ; 36(3): 402-419, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36821828

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a diverse set of commercial chemicals widely detected in humans and the environment. However, only a limited number of PFAS are associated with epidemiological or experimental data for hazard identification. To provide developmental neurotoxicity (DNT) hazard information, the work herein employed DNT new approach methods (NAMs) to generate in vitro screening data for a set of 160 PFAS. The DNT NAMs battery was comprised of the microelectrode array neuronal network formation assay (NFA) and high-content imaging (HCI) assays to evaluate proliferation, apoptosis, and neurite outgrowth. The majority of PFAS (118/160) were inactive or equivocal in the DNT NAMs, leaving 42 active PFAS that decreased measures of neural network connectivity and neurite length. Analytical quality control indicated 43/118 inactive PFAS samples and 10/42 active PFAS samples were degraded; as such, careful interpretation is required as some negatives may have been due to loss of the parent PFAS, and some actives may have resulted from a mixture of parent and/or degradants of PFAS. PFAS containing a perfluorinated carbon (C) chain length ≥8, a high C:fluorine ratio, or a carboxylic acid moiety were more likely to be bioactive in the DNT NAMs. Of the PFAS positives in DNT NAMs, 85% were also active in other EPA ToxCast assays, whereas 79% of PFAS inactives in the DNT NAMs were active in other assays. These data demonstrate that a subset of PFAS perturb neurodevelopmental processes in vitro and suggest focusing future studies of DNT on PFAS with certain structural feature descriptors.


Subject(s)
Fluorocarbons , Neurotoxicity Syndromes , Humans , Neurotoxicity Syndromes/metabolism , Neurons/metabolism , Neuronal Outgrowth , Apoptosis , Fluorocarbons/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL