Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Toxins (Basel) ; 16(1)2024 01 03.
Article in English | MEDLINE | ID: mdl-38251242

ABSTRACT

Xenorhabdus and Photorhabdus, bacterial symbionts of entomopathogenic nematodes Steinernema and Heterorhabditis, respectively, have several biological activities including insecticidal and antimicrobial activities. Thus, XnChi, XhChi, and PtChi, chitinases of X. nematophila, X. hominickii, and P. temperata isolated from Korean indigenous EPNs S. carpocapsae GJ1-2, S. monticolum GJ11-1, and H. megidis GJ1-2 were cloned and expressed in Escherichia coli BL21 to compare their biological activities. Chitinase proteins of these bacterial symbionts purified using the Ni-NTA system showed different chitobiosidase and endochitinase activities, but N-acetylglucosamidinase activities were not shown in the measuring of chitinolytic activity through N-acetyl-D-glucosarmine oligomers. In addition, the proteins showed different insecticidal and antifungal activities. XnChi showed the highest insecticidal activity against Galleria mellonella, followed by PtChi and XhChi. In antifungal activity, XhChi showed the highest half-maximal inhibitory concentration (IC50) against Fusarium oxysporum with 0.031 mg/mL, followed by PtChi with 0.046 mg/mL, and XnChi with 0.072 mg/mL. XhChi also showed the highest IC50 against F. graminearum with 0.040 mg/mL, but XnChi was more toxic than PtChi with 0.055 mg/mL and 0.133 mg/mL, respectively. This study provides an innovative approach to the biological control of insect pests and fungal diseases of plants with the biological activity of symbiotic bacterial chitinases of entomopathogenic nematodes.


Subject(s)
Bacteria , Chitinases , Insecticides , Nematoda , Symbiosis , Animals , Antifungal Agents/metabolism , Bacteria/genetics , Bacteria/metabolism , Chitinases/genetics , Chitinases/metabolism , Escherichia coli/genetics , Insecticides/metabolism , Nematoda/genetics , Nematoda/microbiology , Symbiosis/genetics , Symbiosis/physiology , Republic of Korea
2.
Biochem Biophys Res Commun ; 609: 156-162, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35430419

ABSTRACT

The insect repellent methyl salicylate elicits excitatory responses upon interaction with CquiOR32, an odorant receptor (OR) from the southern house mosquito, Culex quinquefasciatus. By contrast, eucalyptol binds to CquiOR32 to generate electrophysiological and behavioral inhibitory responses. In an attempt to identify CquiOR32 variants displaying more robust inhibitory responses for more accurate current-voltage analysis, we sequenced 31 CquiOR32 clones. In the Xenopus oocyte recording system, CquiOR32V2/CquiOrco-expressing oocytes yielded eucalyptol-elicited outward (inhibitory) currents relatively larger than methyl salicylate-generated inward (excitatory) currents. Rescuing experiments showed that two of the amino acid substitutions in CquiOR32V2 located in a predicted transmembrane helix of the receptor are determinants of the outward/inward ratios. These findings, along with co-stimulus assays, suggest that odorant and inhibitor may bind to the same binding pocket. Current-voltage relationships obtained with standard perfusion buffer and those devoid of Na+ or Cl- indicated that both excitatory and inhibitory currents are mediated, at least in part, by cation. We then concluded that eucalyptol is an inverse agonist, which shifts the open ⇔ closed equilibrium of the receptor toward the closed conformation, thus reducing the spontaneous activity. By contrast, the binding of methyl salicylate shifts the equilibrium towards the open conformation and, consequently, leads to an increase in cation influx.


Subject(s)
Culicidae , Receptors, Odorant , Animals , Eucalyptol/pharmacology , Odorants , Receptors, Odorant/metabolism , Smell/physiology
3.
Insect Biochem Mol Biol ; 144: 103763, 2022 05.
Article in English | MEDLINE | ID: mdl-35364281

ABSTRACT

Previously, we have identified an odorant receptor (OR) from the southern house mosquito Culex quinquefasciatus, CquiOR32, which responded to both odorants (agonists) and inhibitory compounds (antagonists). CquiOR32/CquiOrco-expressing oocytes responded to methyl salicylate and other odorants with inward (regular) currents but gave currents in the reverse direction when challenged with eucalyptol and other inhibitors. To determine whether hitherto unknown ORs show this intrareceptor inhibition, we have now examined two other receptors in the same cluster, CquiOR27 and CquiOR28. We cloned and tested four variants of CquiOR28, but none of the 250 compounds in our panel of odorants, including an Orco ligand candidate (OLC12), elicited inward or upward deflections of the current traces. By contrast, CquiOR27/CquiOrco-expressing oocytes gave robust, dose-dependent inward currents when challenged with γ-octalactone and other odorants. On the other hand, octylamine and other phenolic compounds elicited dose-dependent currents in the reverse direction. When stimulatory and inhibitory compounds were presented in binary mixtures, γ-octalactone-elicited inward currents were attenuated in a dose-dependent manner according to the concentration of octylamine. As part of our chemical ecology approach, we tested the repellency activity of the most potent ligands in the surface landing and feeding assay and a newly reported hand-in cage assay. Protection elicited by γ-octalactone did not differ significantly from that of DEET at the same dose. In the hand-in cage assay, a cream formulation of γ-octalactone showed 97.0 ± 1.3% protection, with 47.6 ± 8.3% and 1.4 ± 0.7% landings per trial in the hands covered with a control and γ-octalactone cream, respectively (N = 8, p = 0.0078, Wilcoxon matched-pairs signed-rank test).


Subject(s)
Culex , Culicidae , Insect Repellents , Receptors, Odorant , Animals , Insect Repellents/pharmacology , Odorants , Receptors, Odorant/genetics
4.
Int J Mol Sci ; 23(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35163153

ABSTRACT

Skeletal muscle is a heterogeneous tissue composed of a variety of functionally different fiber types. Slow-twitch type I muscle fibers are rich with mitochondria, and mitochondrial biogenesis promotes a shift towards more slow fibers. Leucine, a branched-chain amino acid (BCAA), regulates slow-twitch muscle fiber expression and mitochondrial function. The BCAA content is increased in porcine whole-blood protein hydrolysates (PWBPH) but the effect of PWBPH on muscle fiber type conversion is unknown. Supplementation with PWBPH (250 and 500 mg/kg for 5 weeks) increased time to exhaustion in the forced swimming test and the mass of the quadriceps femoris muscle but decreased the levels of blood markers of exercise-induced fatigue. PWBPH also promoted fast-twitch to slow-twitch muscle fiber conversion, elevated the levels of mitochondrial biogenesis markers (SIRT1, p-AMPK, PGC-1α, NRF1 and TFAM) and increased succinate dehydrogenase and malate dehydrogenase activities in ICR mice. Similarly, PWBPH induced markers of slow-twitch muscle fibers and mitochondrial biogenesis in C2C12 myotubes. Moreover, AMPK and SIRT1 inhibition blocked the PWBPH-induced muscle fiber type conversion in C2C12 myotubes. These results indicate that PWBPH enhances exercise performance by promoting slow-twitch muscle fiber expression and mitochondrial function via the AMPK/SIRT1 signaling pathway.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Gene Expression Regulation/drug effects , Muscle Fibers, Slow-Twitch/metabolism , Organelle Biogenesis , Physical Conditioning, Animal , Protein Hydrolysates/pharmacology , Sirtuin 1/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Male , Mice , Mice, Inbred ICR , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Slow-Twitch/drug effects , Signal Transduction , Sirtuin 1/genetics , Swine
7.
iScience ; 19: 25-38, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31349189

ABSTRACT

How chemical signals are integrated at the peripheral sensory system of insects is still an enigma. Here we show that when coexpressed with Orco in Xenopus oocytes, an odorant receptor from the southern house mosquito, CquiOR32, generated inward (regular) currents when challenged with cyclohexanone and methyl salicylate, whereas eucalyptol and fenchone elicited inhibitory (upward) currents. Responses of CquiOR32-CquiOrco-expressing oocytes to odorants were reduced in a dose-dependent fashion by coapplication of inhibitors. This intrareceptor inhibition was also manifested in vivo in fruit flies expressing the mosquito receptor CquiOR32, as well in neurons on the antennae of the southern house mosquito. Likewise, an orthologue from the yellow fever mosquito, AaegOR71, showed intrareceptor inhibition in the Xenopus oocyte recording system and corresponding inhibition in antennal neurons. Inhibition was also manifested in mosquito behavior. Blood-seeking females were repelled by methyl salicylate, but repellence was significantly reduced when methyl salicylate was coapplied with eucalyptol.

8.
Nat Prod Res ; 33(22): 3283-3286, 2019 Nov.
Article in English | MEDLINE | ID: mdl-29726712

ABSTRACT

In this study, Auricularia auricula-judae (Bull.) extract (AAE) had potent antioxidant activity in vitro and promoted the biosynthesis of procollagen, a precursor of collagen in HaCaT cells. In addition, the expression of HAS-3 (hyaluronic acid synthase), which is a moisturizing factor, was increased in HaCaT cells in response to AAE. Therefore, this work suggests that AAE has the potential to exhibit antioxidant activity and promote procollagen biosynthesis in HaCaT cells.


Subject(s)
Agaricales/chemistry , Antioxidants/isolation & purification , Procollagen/biosynthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Basidiomycota , Cell Line , Humans , Hyaluronan Synthases/drug effects , Hyaluronan Synthases/metabolism , Procollagen/drug effects , Skin/cytology , Skin/enzymology , Skin/metabolism
9.
Dev Comp Immunol ; 85: 170-176, 2018 08.
Article in English | MEDLINE | ID: mdl-29684723

ABSTRACT

Serine proteases and serine protease homologs are involved in the prophenoloxidase (proPO)-activating system leading to melanization. The Bombyx mori serine protease homolog BmSPH-1 regulates nodule melanization. Here, we show the dual role of BmSPH-1 in the development and immunity of B. mori. BmSPH-1 was expressed in hemocytes after molting and during the larval-pupal transformation in normal development. In contrast, following infection, BmSPH-1 was expressed in hemocytes and cleaved in the hemolymph, which resulted in the induction of PO activity. Moreover, BmSPH-1 was cleaved in the cuticle during the larval-pupal transformation and early pupal stages. In BmSPH-1 RNAi-treated silkworms, the reduced BmSPH-1 mRNA levels during the spinning stage or the prepupal stage resulted in the arrest of pupation or pupal cuticular melanization, respectively. The binding assays revealed that BmSPH-1 interacts with B. mori immulectin, proPO, and proPO-activating enzyme. Our findings demonstrate that BmSPH-1 paticipates larval-pupal transformation, pupal cuticular melanization and innate immunity of silkworms, illustrating the dual role of BmSPH-1 in development and immunity.


Subject(s)
Bombyx/immunology , Insect Proteins/immunology , Serine Proteases/immunology , Animals , Catechol Oxidase/immunology , Enzyme Precursors/immunology , Hemocytes/immunology , Hemolymph/immunology , Larva/immunology , Molting/immunology , RNA Interference/immunology , Serine Endopeptidases/immunology
10.
J Microbiol Biotechnol ; 28(3): 375-380, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29316744

ABSTRACT

We have previously found that mycelia culture broth of eight kinds of traditional herbal extracts fermented with Phellinus linteus (previously named as 8-HsPLCB) not only inhibited melanin and tyrosinase activity, but also reduced the contents of melanogenesis-related proteins, including tyrosinase and microphthalmia-associated transcription factor, in 3-isobutyl-1-methylxanthine-stimulated B16F0 melanoma cells. For a further study, the effect of 8-HsPLCB against skin pigmentation in brown guinea pigs with ultraviolet B (UVB)-induced hyperpigmentation was investigated. 8-HsPLCB (3%) and arbutin (2%) as positive controls were applied topically twice daily for 4 weeks to the hyperpigmented areas. 8-HsPLCB showed skin-lightening effect as effective as arbutin, one of the most widely used in whitening cosmetics. Melanin index values as the degree of pigmentation showed a significant reduction week by week post 8-HsPLCB treatment and then substantially reduced by 4 weeks. The degree of depigmentation after 4 weeks of topical application with 8-HsPLCB was 32.2% as compared with before treatment (0 week). Moreover, using Fontana-Masson staining and hematoxylin-eosin staining, 8-HsPLCB reduced melanin pigmentation in the basal layer of the epidermis and epidermal thickness changes exposed to the UV-B irradiation as compared with non-treatment and vehicle treatment. The intensity of the skin-lightening effect of 8-HsPLCB was similar to arbutin. These results suggest that the skin-lightening effect of 8-HsPLCB might be resulted from inhibition of melanin synthesis by tyrosinase in melanocytes. To conclude, 8-HsPLCB treatment showed reduction of the melanin pigment and histological changes induced by UV irradiation in brown guinea pigs.


Subject(s)
Basidiomycota/chemistry , Fermented Foods , Hyperpigmentation/drug therapy , Plant Extracts/pharmacology , Skin Lightening Preparations/pharmacology , Skin Pigmentation/drug effects , Ultraviolet Rays/adverse effects , Animals , Arbutin/pharmacology , Epidermis/diagnostic imaging , Epidermis/drug effects , Epidermis/pathology , Guinea Pigs , Male , Melanins/metabolism , Melanins/radiation effects , Melanocytes/drug effects , Models, Animal , Monophenol Monooxygenase/antagonists & inhibitors , Phellinus , Plant Extracts/chemistry , Skin/diagnostic imaging , Skin/drug effects , Skin/pathology , Skin/radiation effects
11.
Proc Natl Acad Sci U S A ; 115(4): 714-719, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29311316

ABSTRACT

Pheromones and other semiochemicals play a crucial role in today's integrated pest and vector management strategies. These semiochemicals are typically discovered by bioassay-guided approaches. Here, we applied a reverse chemical ecology approach; that is, we used olfactory proteins to lead us to putative semiochemicals. Specifically, we used 7 of the top 10 odorant receptors (ORs) most expressed in the antennae of the southern house mosquito, Culex quinquefasciatus, and which are yet to be deorphanized. We expressed these receptors in the Xenopus oocyte recording system and challenged them with a panel of 230 odorants, including physiologically and behaviorally active compounds. Six of the ORs were silent either because they are not functional or a key odorant was missing. CquiOR36, which showed the highest transcript levels of all OR genes in female antennae, was also silent to all odorants in the tested panel, but yielded robust responses when it was accidentally challenged with an old sample of nonanal in ethanol. After confirming that fresh samples were inactive and through a careful investigation of all possible "contaminants" in the old nonanal samples, we identified the active ligand as acetaldehyde. That acetaldehyde is activating CquiOR36 was further confirmed by electroantennogram recordings from antennae of fruit flies engineered to carry CquiOR36. Antennae of female mosquitoes also responded to acetaldehyde. Cage oviposition and dual-choice assays demonstrated that acetaldehyde is an oviposition attractant in a wide range of concentrations and thus of potential practical applications.


Subject(s)
Acetaldehyde/metabolism , Culex/physiology , Receptors, Odorant/metabolism , Acetaldehyde/chemistry , Animals , Culex/genetics , Culicidae/metabolism , Ecology , Female , Mosquito Vectors/metabolism , Odorants , Oviposition/physiology , Pheromones/metabolism , Pheromones/physiology , Receptors, Odorant/genetics , Smell
12.
Front Physiol ; 6: 306, 2015.
Article in English | MEDLINE | ID: mdl-26578978

ABSTRACT

Reception of odorants by two main head appendages, antennae and maxillary palps, is essential for insects' survival and reproduction. There is growing evidence in the literature suggesting that the proboscis is also an olfactory appendage and its function as an additional "antenna" has been previously proposed. We surmised that movements of the labrum toward a blood vessel might be chemically oriented and, if so, there should be odorant receptors expressed in the labrum. To test this hypothesis, we first compared by quantitative PCR expression of odorant receptors (OR) from the Southern house mosquito, Culex quinquefasciatus in antennae and proboscis and, subsequently compared OR expression in various proboscis parts. Our data suggested that a receptor for the oviposition attractant, skatole, CquiOR21, was not expressed in proboscis, whereas a receptor for another oviposition attractant, 4EP (4-ethylphenol), CquiOR99, and a receptorf for the insect repellent DEET, CquiOR136, were expressed in the stylet of the proboscis, particularly in the tip of the labrum. In a dual-choice olfactometer, mosquitoes having the stylet coated with nail polish were attracted to 4EP in the same manner as the untreated mosquitoes. By contrast, in an oviposition assay, the stylet-treated mosquitoes did not discriminate 4EP from control oviposition cups, whereas the untreated mosquitoes (as well as mosquitoes having the labella coated) laid significantly more egg rafts in cups treated with 4EP. Ablation experiments confirmed that 4EP was sensed by the labrum where CquiOR99 is highly expressed. Stylet-coated, labella-coated, and untreated mosquitoes laid significantly more egg rafts in skatole-treated cups than in control cups. Likewise, coating of proboscis structures with nail polish had no effect on DEET-mediated oviposition deterrence. In a behavioral arena designed to mimic a human arm, mosquitoes showed significantly reduced probing time when blood was impregnated with 4EP, i.e., they engaged more rapidly in continuous blood feeding as compared to untreated blood. The time of engagement for feeding in skatole-containing blood vs. untreated blood did not differ significantly. Taken together, these data suggest that 4EP reception by the labrum is important not only for oviposition decisions, but also for reducing probing and initiation of blood feeding.

13.
Front Physiol ; 6: 56, 2015.
Article in English | MEDLINE | ID: mdl-25774136

ABSTRACT

As opposed to humans, insects rely heavily on an acute olfactory system for survival and reproduction. Two major types of olfactory proteins, namely, odorant-binding proteins (OBPs) and odorant receptors (ORs), may contribute to the selectivity and sensitivity of the insects' olfactory system. Here, we aimed at addressing the question whether OBPs highly enriched in the antennae of the southern house mosquito, Culex quinquefasciatus, contribute at least in part to the selective reception of physiologically relevant compounds. Using a fluorescence reporter and a panel of 34 compounds, including oviposition attractants, human-derived attractants, and repellents, we measured binding affinities of CquiOBP1, CquiOBP2, and CquiOBP5. Based on dissociation constants, we surmised that CquiOBP2 is a carrier for the oviposition attractant skatole, whereas CquiOBP1 and CquiOBP5 might transport the oviposition pheromone MOP, a human-derived attractant nonanal, and the insect repellent picardin. Binding of these three ligands to CquiOBP1 was further analyzed by examining the influence of pH on apparent affinity as well as by docking these three ligands into CquiOBP1. Our findings suggest that CquiOBP1 might discriminate MOP from nonanal/picaridin on the basis of the midpoint transition of a pH-dependence conformational change, and that MOP is better accommodated in the binding cavity than the other two ligands. These findings, along with previous experimental evidence suggesting that CquiOBP1 does not detect nonanal in vivo, suggest that OBP selectivity may not be clearly manifested in their dissociation constants.

14.
Proc Natl Acad Sci U S A ; 111(46): 16592-7, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25349401

ABSTRACT

Insect repellents are important prophylactic tools for travelers and populations living in endemic areas of malaria, dengue, encephalitis, and other vector-borne diseases. DEET (N,N-diethyl-3-methylbenzamide) is a 6-decade-old synthetic repellent, which is still considered the gold standard of mosquito repellents. Mosquitoes use their sense of smell to detect DEET, but there are currently two hypotheses regarding its mode of action: activation of ionotropic receptor IR40a vs. odorant receptor(s). Here, we demonstrate that DEET, picaridin, insect repellent 3535, and p-menthan-3,8-diol activate the odorant receptor CquiOR136 of the southern house mosquito, Culex quinquefasciatus. Electrophysiological and behavioral assays showed that CquiIR40a knockdown had no significant effect on DEET detection and repellency. By contrast, reduction of CquiOR136 transcript levels led to a significant decrease in electroantennographic responses to DEET and a complete lack of repellency. Thus, direct activation of an odorant receptor, not an ionotropic receptor, is necessary for DEET reception and repellency in Culex mosquitoes. Interestingly, methyl jasmonate, a repellent derived from the nonvolatile jasmonic acid in the signaling pathway of plant defenses, elicited robust responses in CquiOR136•CquiOrco-expressing Xenopus oocytes, thus suggesting a possible link between natural products with long insect-plant evolutionary history and synthetic repellents.


Subject(s)
Acetates/pharmacology , Culex/physiology , Cyclopentanes/pharmacology , DEET/pharmacology , Insect Repellents/pharmacology , Menthol/analogs & derivatives , Oxylipins/pharmacology , Receptors, Odorant/physiology , Smell/physiology , beta-Alanine/analogs & derivatives , Aldehydes/pharmacology , Animals , Arthropod Antennae/physiology , Avoidance Learning , Cloning, Molecular , Culex/drug effects , Cyclohexane Monoterpenes , Electrophysiology , Feeding Behavior/drug effects , Feeding Behavior/physiology , Female , Menthol/pharmacology , Models, Neurological , Molecular Sequence Data , Oocytes , Piperidines/pharmacology , RNA Interference , Receptors, Ionotropic Glutamate/genetics , Receptors, Ionotropic Glutamate/physiology , Receptors, Odorant/biosynthesis , Receptors, Odorant/drug effects , Receptors, Odorant/genetics , Recombinant Fusion Proteins/metabolism , Smell/genetics , Transcription, Genetic , Xenopus laevis , beta-Alanine/pharmacology
15.
Proc Natl Acad Sci U S A ; 110(46): 18704-9, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24167245

ABSTRACT

The southern house mosquito, Culex quinquefasciatus, has one of the most acute and eclectic olfactory systems of all mosquito species hitherto studied. Here, we used Illumina sequencing to identify olfactory genes expressed predominantly in antenna, mosquito's main olfactory organ. Less than 50% of the trimmed reads generated by high-quality libraries aligned to a transcript, but approximately 70% of them aligned to the genome. Differential expression analysis, which was validated by quantitative real-time PCR on a subset of genes, showed that approximately half of the 48 odorant-binding protein genes were enriched in antennae, with the other half being predominantly expressed in legs. Similar patterns were observed with chemosensory proteins, "plus-C" odorant-binding proteins, and sensory neuron membrane proteins. Transcripts for as many as 43 ionotropic receptors were enriched in female antennae, thus making the ionotropic receptor family the largest of antennae-rich olfactory genes, second only to odorant receptor (OR) genes. As many as 177 OR genes have been identified, including 36 unique transcripts. The unique OR genes differed from previously annotated ORs in internal sequences, splice variants, and extended N or C terminus. One of the previously unknown transcripts was validated by cloning and functional expression. When challenged with a large panel of physiologically relevant compounds, CquiOR95b responded in a dose-dependent manner to ethyl 2-phenylacteate, which was demonstrated to repel Culex mosquitoes, and secondarily to citronellal, a known insect repellent. This transcriptome study led to identification of key molecular components and a repellent for the southern house mosquito.


Subject(s)
Culex/genetics , Receptors, Odorant/genetics , Smell/genetics , Acyclic Monoterpenes , Aldehydes , Animals , Arthropod Antennae/metabolism , Base Sequence , Cloning, Molecular , Culex/metabolism , Female , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Monoterpenes , Protein Isoforms/genetics , Real-Time Polymerase Chain Reaction
16.
Insect Biochem Mol Biol ; 43(10): 916-23, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23911547

ABSTRACT

The Southern house mosquito, Culex quinquefasciatus--a vector of West Nile virus--is equipped with 130 odorant receptors (ORs), which enable young females to locate plants and blood-meal sources and older females to find suitable sites for oviposition. In our attempts to de-orphanize ORs expressed in female antennae, we identified CquiOR37 and CquiOR99, which were narrowly tuned to two phenolic compounds, 4-methylphenol and 4-ethylphenol. When tested in the Xenopus oocyte recording system the observed EC50s for 4-methylphenol and 4-ethylphenol were 6.4 and 18.2 µM for CquiOR37 and 14.4 and 0.74 µM for CquiOR99 (goodness of fit, R² = 0.88-0.99), respectively. Indoor behavioral assays demonstrated that gravid female mosquitoes laid significantly more eggs in water trays spiked with these compounds than in control water trays. Field studies with gravid traps corroborated that 4-ethylphenol is active in a wide range of doses from 0.1 to 10 µg/l, as required for practical applications. A dsRNA construct based on the two genes, CquiOR37/99-dsRNA was stable in pupa hemolymph for up to 3 h. Pupae injected with CquiOR37/99-dsRNA, ß-galactosidase-dsRNA or water had more than 40% survival rate at the peak of oviposition (day-9). qPCR analysis showed individual variation, but significant mean reduction in CquiOR37 and CquiOR99 transcript levels in CquiOR37/99-dsRNA-treated mosquitoes. Water-injected females and those treated with the control gene laid significantly more eggs in trays containing 4-ethylphenol than in water trays, whereas CquiOR37/99-dsRNA-treated mosquitoes laid normal number of eggs, but could not discriminate treatment from control. This study linked for the first time specific receptors for 4-ethylphenol with increased oviposition in the important vector Cx. quinquefasciatus.


Subject(s)
Cresols/metabolism , Culex/metabolism , Oviposition , Phenols/metabolism , Receptors, Odorant/metabolism , Animals , Behavior, Animal , Cloning, Molecular , Female , Insect Vectors/metabolism , Mosquito Control , Pheromones/metabolism , RNA Interference
17.
PLoS One ; 8(6): e67794, 2013.
Article in English | MEDLINE | ID: mdl-23826341

ABSTRACT

Antennae-specific odorant-degrading enzymes (ODEs) are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes--the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs). Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW), Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13-16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13-16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons.


Subject(s)
Aldehyde Oxidase/metabolism , Arthropod Antennae/enzymology , Moths/enzymology , 1-Propanol/metabolism , Aldehyde Oxidase/antagonists & inhibitors , Aldehyde Oxidase/chemistry , Aldehyde Oxidase/genetics , Amino Acid Sequence , Animals , Arthropod Antennae/drug effects , Bombyx/enzymology , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Female , Gene Expression Profiling , Hot Temperature , Male , Molecular Sequence Data , Molecular Weight , Moths/genetics , Organ Specificity/drug effects , Oxidation-Reduction/drug effects , Protein Multimerization/drug effects , Protein Stability/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment , Smell/drug effects , Substrate Specificity/drug effects
18.
J Insect Physiol ; 59(9): 961-6, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23876610

ABSTRACT

The Southern house mosquito Culex quinquefasciatus has the largest repertoire of odorant receptors (ORs) of all mosquitoes and dipteran species whose genomes have been sequenced to date. Previously, we have identified and de-orphanized two ORs expressed in female antennae, CquiOR2 and CquiOR10, which are sensitive to oviposition attractants. In view of a new nomenclature for the Culex genome (VectorBase) we renamed these ORs as CquiOR21 (formerly CquiOR10) and CquiOR121 (CquiOR2). In addition, we selected ORs from six different phylogenetic groups for deorphanization. We cloned four of them by using cDNA from female antennae as a template. Attempts to clone CquiOR87 and CquiOR110 were unsuccessful either because they are pseudogenes or are not expressed in adult female antennae, the main olfactory tissue. By contrast, CquiOR1, CquiOR44, CquiOR73, and CquiOR161 were highly expressed in female antennae. To de-orphanize these ORs, we employed the Xenopus oocyte recording system. CquiORx-CquiOrco-expressed oocytes were challenged with a panel of 90 compounds, including known oviposition attractants, human and vertebrate host odorants, plant kairomones, and naturally occurring repellents. While CquiOR161 did not respond to any test compound in two different laboratories, CquiOR1 showed the features of a generic OR, with strong responses to 1-octen-3-ol and other ligands. CquiOR44 and CquiOR73 showed preference to plant-derived terpenoids and phenolic compounds, respectively. While fenchone was the best ligand for the former, 3,5-dimethylphenol elicited the strongest responses in the latter. The newly de-orphanized ORs may be involved in reception of plant kairomones and/or natural repellents.


Subject(s)
Arthropod Antennae/metabolism , Culex/genetics , Receptors, Odorant/genetics , Animals , Culex/metabolism , Eugenol/metabolism , Female , Male , Pheromones/metabolism , Phylogeny , Receptors, Odorant/metabolism , Terminology as Topic , Xenopus
19.
Toxicon ; 63: 1-6, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23164714

ABSTRACT

Bumblebee (Bombus spp.) venom contains a variety of components, including bombolitin, phospholipase A(2) (PLA(2)), serine proteases, and serine protease inhibitors. In this study, we identified a bumblebee (Bombus terrestris) venom serine protease inhibitor (Bt-KTI) that acts as a plasmin inhibitor. Bt-KTI consists of a 58-amino acid mature peptide that displays features consistent with snake venom Kunitz-type inhibitors, including six conserved cysteine residues and a P1 site. Recombinant Bt-KTI was expressed as a 6.5-kDa peptide in baculovirus-infected insect cells. The recombinant peptide demonstrated properties similar to Kunitz-type trypsin inhibitors. Bt-KTI showed no detectable inhibitory effects on factor Xa, thrombin, or tissue plasminogen activator; however, Bt-KTI strongly inhibited plasmin, indicating that it acts as an antifibrinolytic agent. These findings demonstrate the antifibrinolytic role of Bt-KTI as a plasmin inhibitor.


Subject(s)
Antifibrinolytic Agents/pharmacology , Bee Venoms/metabolism , Bees/physiology , Serine Proteinase Inhibitors/genetics , Serine Proteinase Inhibitors/pharmacology , Amino Acid Sequence , Animals , Antifibrinolytic Agents/chemistry , Baculoviridae/genetics , Base Sequence , Bee Venoms/genetics , Cloning, Molecular , Drug Combinations , Electrophoretic Mobility Shift Assay/methods , Fibrinolysin/antagonists & inhibitors , Fibrinolysin/pharmacology , Gene Expression , Insect Proteins/genetics , Insect Proteins/pharmacology , Insecta , Molecular Sequence Data , Recombinant Proteins , Sequence Alignment , Serine Proteinase Inhibitors/chemistry , Thrombin/drug effects
20.
PLoS One ; 7(7): e41653, 2012.
Article in English | MEDLINE | ID: mdl-22911835

ABSTRACT

The insect's olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this "lock-and-key" tight selectivity. Formate analogs can be used as replacement for less chemically stable, long-chain aldehyde pheromones, because male moths respond physiologically and behaviorally to these parapheromones. However, it remained hitherto unknown how formate analogs interact with aldehyde-sensitive odorant receptors (ORs). Neuronal responses to semiochemicals were investigated with single sensillum recordings. Odorant receptors (ORs) were cloned using degenerate primers, and tested with the Xenopus oocyte expression system. Quality, relative quantity, and purity of samples were evaluated by gas chromatography and gas chromatography-mass spectrometry. We identified olfactory receptor neurons (ORNs) housed in trichoid sensilla on the antennae of male navel orangeworm that responded equally to the main constituent of the sex pheromone, (11Z,13Z)-hexadecadienal (Z11Z13-16Ald), and its formate analog, (9Z,11Z)-tetradecen-1-yl formate (Z9Z11-14OFor). We cloned an odorant receptor co-receptor (Orco) and aldehyde-sensitive ORs from the navel orangeworm, one of which (AtraOR1) was expressed specifically in male antennae. AtraOR1•AtraOrco-expressing oocytes responded mainly to Z11Z13-16Ald, with moderate sensitivity to another component of the sex pheromone, (11Z,13Z)-hexadecadien-1-ol. Surprisingly, this receptor was more sensitive to the related formate than to the natural sex pheromone. A pheromone receptor from Heliothis virescens, HR13 ( = HvirOR13) showed a similar profile, with stronger responses elicited by a formate analog than to the natural sex pheromone, (11Z)-hexadecenal thus suggesting this might be a common feature of moth pheromone receptors.


Subject(s)
Moths/metabolism , Receptors, Pheromone/metabolism , Sex Attractants/metabolism , Animals , Chromatography, Gas , Electrophysiological Phenomena/drug effects , Female , Formates/pharmacology , Gene Expression Profiling , Ligands , Male , Moths/drug effects , Olfactory Bulb/drug effects , Olfactory Bulb/physiology , Oocytes/drug effects , Oocytes/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Receptors, Pheromone/genetics , Sensation/drug effects , Sensation/physiology , Sex Attractants/pharmacology , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...