Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186013

ABSTRACT

In this work, we report the synthesis and photocatalytic properties of N,N-bis(n-hexyl)-2-bromo-6-(n-hexylamino)-1,4,5,8-naphthalenetetracarboxylic diimide photocatalyst, NDI-PC, in visible light. In the presence of air or oxidant, NDI-PC efficiently enables multiple photooxygenations of isoquinolines, thiocyanation of phenylimidazopyridines, functionalization of quinolinones by allowing regioselective installation of an SCN, SeCN, SPh, SePh, Cl, Br, or I group at the C-3 position, and isomerization of alkenes. Mechanistic investigations suggest an oxidative photoredox process for oxygenation and C-H functionalization, while isomerization is believed to proceed through a photosensitization pathway.

2.
J Org Chem ; 88(15): 10412-10425, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37440673

ABSTRACT

A regioselective direct carboxamidation reaction of 2-indolylmethanols with readily available isocyanoesters/isocyanides has been reported in this work. The reaction was catalyzed by Bronsted acid such as p-TsOH to deliver the benzylic regioselective amides in 67-86% yield under mild conditions. The developed methodology provides alternative access to traditional metal-free carboxamidation via C-C and C-O bond formation with high atom economy. Furthermore, the developed approach was diversified to synthesize chiral indole-2-carboxamide derivatives with a moderate enantiomeric excess (61-73% ee) using an (R)-chiral phosphoric acid.

3.
Chem Rec ; 22(12): e202200172, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36069267

ABSTRACT

There is growing interest towards the design and synthesis of organic redox-active systems, which exist in ionic form. Multi- redox systems entail life-sustaining processes like photosynthesis and cellular respiration. The significant challenge for material scientists is to rationally design complex molecular materials that can store and transfer multiple electrons at low operational potentials and are stable under ambient conditions. Also, important are the designed ionic π-systems that combine efficient electron and ion transport. Here, we discuss the synthesis of ionic π-systems which exist in the closed-shell form. Firstly, different classes of ionic arylenediimides and viologens with different π-linkers are discussed from the synthetic, structural and redox perspective. These ionic π-systems are based on the electron deficient π-scaffolds, and are shown to accumulate upto six electrons. We then discuss electron-rich ionic arylenediimides which can exist in anionic form or zwitterionic form. The anionic electron donors have absorption extending to the near Infrared (NIR) region and can be stabilized in aqueous solution. We also discuss the effect of the electron accumulation on the aromaticity and non-aromaticity of the naphthalene and the imide rings of the naphthalenediimides. We finally discuss in brief, the applications related to the organic mixed ionic-electronic conductors.

4.
Org Lett ; 24(16): 3038-3042, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35439020

ABSTRACT

π-acidic boxes exhibiting electron reservoir and proton conduction are unprecedented because of their instability in water. We present the synthesis of one of the strongest electron-deficient ionic boxes showing e- uptake as well as proton conductivity. Two large anions fit in the box to form anion-π interactions and form infinite anion-solvent wires. The box with NO3-···water wires confers high proton conductivity and presents the first example that manifests redox and ionic functionality in an organic electron-deficient macrocycle.

5.
Chemistry ; 24(8): 1821-1832, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29077995

ABSTRACT

Three classes of donor-acceptor (D-A) π-extended chromophores (1-12) were synthesized through a phosphite-mediated cross-coupling reaction, in which the anhydride- or imide-based π-As and number of tetrathiafulvalene (TTF)/dithiafulvalene (DTF) Ds were systematically changed. Large π rings, such as benzoperylene and coronene, were integrated into the TTF/DTF unit, for the first time, to overcome their high insolubility. The anhydride and imide groups in the π acceptors can significantly alter the frontier orbitals and influence the optoelectronic properties. The D moieties allow the formation of radical cations (D.+ ) and the π-extended A moieties aid the formation of radical anions (A.- ) by oxidation/reduction under ambient conditions. The molecules revealed UV/Vis/near-IR absorption, fluorescence extending into the near-IR region, and amphoteric electrochemical properties. Chromophores 10 and 12 show solvatochromism in a wide range of solvents. The π-As with anhydride functionality allow easier electron uptake, relative to the imide groups, whereas the increasing number of D TTF/DTF units make them easy to oxidize. Interestingly, the trans-TTF-fused molecules (1, 6, and 11) exhibited a mixed-valence state in the mid-IR region (ν˜ =5130-4000 cm-1 ). Moderate electron coupling between the redox centers is inferred to the compounds being of Robin-Day class II. The multistate redox activity along with panchromism and near-/mid-IR optical absorption of these systems can be attractive towards advanced switchable materials.

SELECTION OF CITATIONS
SEARCH DETAIL