Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 108(8): 080405, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22463505

ABSTRACT

We have realized long-lived ground-state polar molecules in a 3D optical lattice, with a lifetime of up to 25 s, which is limited only by off-resonant scattering of the trapping light. Starting from a 2D optical lattice, we observe that the lifetime increases dramatically as a small lattice potential is added along the tube-shaped lattice traps. The 3D optical lattice also dramatically increases the lifetime for weakly bound Feshbach molecules. For a pure gas of Feshbach molecules, we observe a lifetime of greater than 20 s in a 3D optical lattice; this represents a 100-fold improvement over previous results. This lifetime is also limited by off-resonant scattering, the rate of which is related to the size of the Feshbach molecule. Individually trapped Feshbach molecules in the 3D lattice can be converted to pairs of K and Rb atoms and back with nearly 100% efficiency.

2.
Faraday Discuss ; 142: 257-70; discussion 319-34, 2009.
Article in English | MEDLINE | ID: mdl-20151547

ABSTRACT

By using broadband lasers, we demonstrate the possibilities for control of cold molecules formed via photoassociation. Firstly, we present a detection REMPI scheme (M. Viteau et al., Phys. Rev. A, 2009, 79, 021402) to systematically investigate the mechanisms of formation of ultracold Cs2 molecules in deeply bound levels of their electronic ground state X1sigma(g)+. This broadband detection scheme could be generalized to other molecular species. Then we report a vibrational cooling technique (M. Viteau et al., Science, 2008, 321, 232) through optical pumping obtained by using a shaped mode locked femtosecond laser. The broadband femtosecond laser excites the molecules electronically, leading to a redistribution of the vibrational population in the ground state via a few absorption-spontaneous emission cycles. By removing the laser frequencies corresponding to the excitation of the v = 0 level, we realize a dark state for the so-shaped femtosecond laser, leading, with the successive laser pulses, to an accumulation of the molecules in the v = 0 level, ie. a laser cooling of the vibration. The simulation of the vibrational laser cooling allows us to characterize the criteria to extend the mechanism to other molecular species (R. V. Krems, Int. Rev. Phys. Chem., 2005, 24, 99). We finally discuss the generalization of the technique to laser cooling of the rotation of the molecule.

3.
Science ; 321(5886): 232-4, 2008 Jul 11.
Article in English | MEDLINE | ID: mdl-18621665

ABSTRACT

The methods producing cold molecules from cold atoms tend to leave molecular ensembles with substantial residual internal energy. For instance, cesium molecules initially formed via photoassociation of cold cesium atoms are in several vibrational levels nu of the electronic ground state. We applied a broadband femtosecond laser that redistributes the vibrational population in the ground state via a few electronic excitation/spontaneous emission cycles. The laser pulses are shaped to remove the excitation frequency band of the nu = 0 level, preventing re-excitation from that state. We observed a fast and efficient accumulation ( approximately 70% of the initially detected molecules) in the lowest vibrational level, nu = 0, of the singlet electronic state. The validity of this incoherent depopulation pumping method is very general and opens exciting prospects for laser cooling and manipulation of molecules.

4.
Phys Rev Lett ; 99(7): 073002, 2007 Aug 17.
Article in English | MEDLINE | ID: mdl-17930892

ABSTRACT

High resolution laser Stark excitation of np (60

5.
Phys Rev Lett ; 97(8): 083003, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-17026300

ABSTRACT

High resolution laser excitation of np Rydberg states of cesium atoms shows a dipole blockade at Förster resonances corresponding to the resonant dipole-dipole energy transfer of the np+np --> ns+(n+1)s reaction. The dipole-dipole interaction can be tuned on and off by the Stark effect, and such a process, observed for relatively low n(25-41), is promising for quantum gate devices. Both Penning ionization and saturation in the laser excitation can limit the range of observation of the dipole blockade.

6.
J Photochem Photobiol B ; 78(3): 235-44, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15708521

ABSTRACT

The delayed luminescence curves of biological tissues, in particular the "hyperbolic" oscillations of the form exp(-iln (1 + lambda t)) with t as the time and lambda as a constant, were subjects of further experimental and theoretical investigations. It turned out that the oscillations are solutions of a Hamiltonian that keeps coherent states coherent. In agreement to the expectations the oscillations disappear as soon as the biological system looses its integrity or its collective structure. The photocount statistics (PCS) confirms these results. The illumination itself influences the biological state under consideration. The temperature dependence displays small deviations from the Arrhenius-law with a mean activation energy of about 0.5 eV in case of plants. The results may be useful for investigating supermolecular interactions as well as for assessing the quality or quality changes of biological tissues.


Subject(s)
Luminescent Measurements , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL