Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 18(6): 627-637, 2019 06.
Article in English | MEDLINE | ID: mdl-31114073

ABSTRACT

Cells are transplanted to regenerate an organs' parenchyma, but how transplanted parenchymal cells induce stromal regeneration is elusive. Despite the common use of a decellularized matrix, little is known as to the pivotal signals that must be restored for tissue or organ regeneration. We report that Alx3, a developmentally important gene, orchestrated adult parenchymal and stromal regeneration by directly transactivating Wnt3a and vascular endothelial growth factor. In contrast to the modest parenchyma formed by native adult progenitors, Alx3-restored cells in decellularized scaffolds not only produced vascularized stroma that involved vascular endothelial growth factor signalling, but also parenchymal dentin via the Wnt/ß-catenin pathway. In an orthotopic large-animal model following parenchyma and stroma ablation, Wnt3a-recruited endogenous cells regenerated neurovascular stroma and differentiated into parenchymal odontoblast-like cells that extended the processes into newly formed dentin with a structure-mechanical equivalency to native dentin. Thus, the Alx3-Wnt3a axis enables postnatal progenitors with a modest innate regenerative capacity to regenerate adult tissues. Depleted signals in the decellularized matrix may be reinstated by a developmentally pivotal gene or corresponding protein.


Subject(s)
Homeodomain Proteins/metabolism , Parenchymal Tissue/physiology , Tooth/cytology , Tooth/embryology , Adolescent , Animals , Female , Homeodomain Proteins/genetics , Humans , Incisor/cytology , Incisor/embryology , Mice, Inbred Strains , Molar, Third/cytology , Organ Culture Techniques , Parenchymal Tissue/cytology , Pregnancy , Promoter Regions, Genetic , Regeneration , Stromal Cells/physiology , Swine , Vascular Endothelial Growth Factor A/genetics , Wnt3A Protein/genetics , Wnt3A Protein/metabolism
2.
Sci Rep ; 6: 36411, 2016 12 21.
Article in English | MEDLINE | ID: mdl-28000662

ABSTRACT

Hematopoietic stem cells (HSCs) in the endosteum of mesoderm-derived appendicular bones have been extensively studied. Neural crest-derived bones differ from appendicular bones in developmental origin, mode of bone formation and pathological bone resorption. Whether neural crest-derived bones harbor HSCs is elusive. Here, we discovered HSC-like cells in postnatal murine mandible, and benchmarked them with donor-matched, mesoderm-derived femur/tibia HSCs, including clonogenic assay and long-term culture. Mandibular CD34 negative, LSK cells proliferated similarly to appendicular HSCs, and differentiated into all hematopoietic lineages. Mandibular HSCs showed a consistent deficiency in lymphoid differentiation, including significantly fewer CD229 + fractions, PreProB, ProB, PreB and B220 + slgM cells. Remarkably, mandibular HSCs reconstituted irradiated hematopoietic bone marrow in vivo, just as appendicular HSCs. Genomic profiling of osteoblasts from mandibular and femur/tibia bone marrow revealed deficiencies in several HSC niche regulators among mandibular osteoblasts including Cxcl12. Neural crest derived bone harbors HSCs that function similarly to appendicular HSCs but are deficient in the lymphoid lineage. Thus, lymphoid deficiency of mandibular HSCs may be accounted by putative niche regulating genes. HSCs in craniofacial bones have functional implications in homeostasis, osteoclastogenesis, immune functions, tumor metastasis and infections such as osteonecrosis of the jaw.


Subject(s)
Hematopoietic Stem Cells/physiology , Animals , Antigens, CD/metabolism , Bone Marrow Cells/physiology , Bone Marrow Transplantation , Bone and Bones/cytology , Bone and Bones/metabolism , Cell Differentiation , Cell Lineage , Cell Self Renewal , Cells, Cultured , Hematopoiesis , Mice, Inbred C57BL , Neural Crest/cytology , Stem Cell Niche , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...