Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Malar J ; 23(1): 159, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773528

ABSTRACT

BACKGROUND: Primaquine (PQ) is the prototype 8-aminoquinoline drug, a class which targets gametocytes and hypnozoites. The World Health Organization (WHO) recommends adding a single low dose of primaquine to the standard artemisinin-based combination therapy (ACT) in order to block malaria transmission in regions with low malaria transmission. However, the haemolytic toxicity is a major adverse outcome of primaquine in glucose-6-phosphate dehydrogenase (G6PD)-deficient subjects. This study aimed to characterize the pharmacokinetic properties of primaquine and its major metabolites in G6PD-deficient subjects. METHODS: A single low-dose of primaquine (0.4-0.5 mg/kg) was administered in twenty-eight African males. Venous and capillary plasma were sampled up to 24 h after the drug administration. Haemoglobin levels were observed up to 28 days after drug administration. Only PQ, carboxy-primaquine (CPQ), and primaquine carbamoyl-glucuronide (PQCG) were present in plasma samples and measured using liquid chromatography mass spectrometry. Drug and metabolites' pharmacokinetic properties were investigated using nonlinear mixed-effects modelling. RESULTS: Population pharmacokinetic properties of PQ, CPQ, and PQCG can be described by one-compartment disposition kinetics with a transit-absorption model. Body weight was implemented as an allometric function on the clearance and volume parameters for all compounds. None of the covariates significantly affected the pharmacokinetic parameters. No significant correlations were detected between the exposures of the measured compounds and the change in haemoglobin or methaemoglobin levels. There was no significant haemoglobin drop in the G6PD-deficient patients after administration of a single low dose of PQ. CONCLUSIONS: A single low-dose of PQ was haematologically safe in this population of G6PD-normal and G6PD-deficient African males without malaria. Trial registration NCT02535767.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Primaquine , Adolescent , Adult , Humans , Male , Middle Aged , Young Adult , Antimalarials/pharmacokinetics , Antimalarials/blood , Antimalarials/administration & dosage , Primaquine/pharmacokinetics , Primaquine/blood , Primaquine/administration & dosage
2.
Br J Clin Pharmacol ; 89(3): 1176-1186, 2023 03.
Article in English | MEDLINE | ID: mdl-36256474

ABSTRACT

AIMS: Amodiaquine is a 4-aminoquinoline used extensively for the treatment and prevention of malaria. Orally administered amodiaquine is largely converted to the active metabolite desethylamodiaquine. Amodiaquine can cause bradycardia, hypotension, and electrocardiograph QT interval prolongation, but the relationship of these changes to drug concentrations is not well characterized. METHODS: We conducted a secondary analysis of a pharmacokinetic study of the cardiac safety of amodiaquine (10 mg base/kg/day over 3 days) in 54 Kenyan adults (≥18 years) with uncomplicated malaria. Nonlinear mixed effects modelling was used to assess amodiaquine and desethylamodiaquine concentration-effect relationships for vital sign (pulse rate, blood pressure) and electrocardiograph interval (QT, QRS, PR) outcomes. We also measured the spontaneous beating heart rate after cumulative dosing of amodiaquine and desethylamodiaquine in isolated mouse atrial preparations. RESULTS: Amodiaquine and desethylamodiaquine caused concentration-dependent mean decreases in pulse rate (1.9 beats/min per 100 nmol/L; 95% confidence interval: 1.5-2.4), supine systolic blood pressure (1.7 mmHg per 100 nmol/L; 1.2-2.1), erect systolic blood pressure (1.5 mmHg per 100 nmol/L; 1.0-2.0) and erect diastolic blood pressure (1.4 mmHg per 100 nmol/L; 1.0-1.7). The mean QT interval prolongation was 1.4 ms per 100 nmol/L irrespective of correction factor after adjustment for residual heart rate dependency. There was no significant effect of drug concentration on postural change in blood pressure or PR and QRS intervals. In mouse atria, the spontaneous beating rate was significantly reduced by amodiaquine (n = 6) and desethylamodiaquine (n = 8) at 3 µmol/L (amodiaquine: 10 ± 2%; desethylamodiaquine: 12 ± 3%) and 10 µmol/L (amodiaquine: 50 ± 7%; desethylamodiaquine: 46 ± 6%) concentrations with no significant difference in potency between the 2 compounds. CONCLUSION: Amodiaquine and desethylamodiaquine have concentration-dependent effects on heart rate, blood pressure, and ventricular repolarization.


Subject(s)
Antimalarials , Malaria , Animals , Mice , Amodiaquine/adverse effects , Antimalarials/adverse effects , Kenya , Malaria/drug therapy , Malaria/prevention & control
3.
Health Promot Perspect ; 13(4): 254-266, 2023.
Article in English | MEDLINE | ID: mdl-38235006

ABSTRACT

Background: This systematic review aimed to summarize and evaluate the prevalence of physical activity (PA) counseling in primary care. Methods: Five databases (CINAHL Complete, Embase, Medline, PsycInfo, and Web of Science) were searched. Primary epidemiological studies on PA counseling in primary care were included. The Joanna Briggs Institute critical appraisal checklist for studies reporting prevalence data was used to assess the quality of studies. The review protocol was registered with PROSPERO (CRD42021284570). Results: After duplicate removal, 4990 articles were screened, and 120 full-text articles were then assessed. Forty studies were included, with quality assessment scores ranging from 5/9 to 9/9. The pooled prevalence of PA counseling based on 35 studies (199830 participants) was 37.9% (95% CI 31.2 to 44.6). The subgroup analyses showed that the prevalence of PA counseling was 33.1% (95% CI: 22.6 to 43.7) in females (10 studies), 32.1% (95% CI: 22.6 to 41.7) in males (10 studies), 65.5% (95% CI: 5.70 to 74.1) in people with diabetes mellitus (6 studies), 41.6% (95% CI: 34.9 to 48.3) in people with hypertension (5 studies), and 56.8% (95% CI: 31.7 to 82.0) in people with overweight or obesity (5 studies). All meta-analyses showed high levels of heterogeneity (I2=93% to 100%). Conclusion: The overall prevalence of PA counseling in primary care was low. The high levels of heterogeneity suggest variability in the perspectives and practices of PA counseling in primary care. PA counseling should be standardized to ensure its optimum effectiveness in primary care.

4.
Parasit Vectors ; 15(1): 477, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539906

ABSTRACT

BACKGROUND: Ascaris lumbricoides causes human ascariasis, the most prevalent helminth disease, infecting approximately 1 billion individuals globally. In 2019 the global disease burden was estimated to be 754,000 DALYs and resulted in 2090 deaths. In the absence of a vaccination strategy, treatment of ascariasis has relied on anthelminthic chemotherapy, but drug resistance is a concern. The propensity for reinfection is also a major challenge to disease control; female worms lay up to 200,000 eggs daily, which contaminate surrounding environments and remain viable for years, resulting in high transmission rates. Understanding the molecular mechanisms of reproductive processes, including control of egg production, spermatogenesis, oogenesis and embryogenesis, will drive the development of new drugs and/or vaccine targets for future ascariasis control. METHODS: Transcriptome profiles of discrete reproductive and somatic tissue samples were generated from adult male and female worms using Illumina HiSeq with 2 × 150 bp paired-end sequencing. Male tissues included: testis germinal zone, testis part of vas deferens, seminal vesicle and somatic tissue. Female tissues included: ovary germinal zone, ovary part of the oviduct, uterus and somatic tissue. Differentially expressed genes (DEGs) were identified from the fragments per kilobases per million reads (FPKM) profiles. Hierarchical analysis was performed to identify tissue-specific genes. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to identify significant terms and pathways for the DEGs. RESULTS: DEGs involved in protein phosphorylation and adhesion molecules were indicated to play a crucial role in spermatogenesis and fertilization, respectively. Those genes associated with the G-protein-coupled receptor (GPCR) signaling pathway and small GTPase-mediated signal transduction pathway play an essential role in cytoskeleton organization during oogenesis. Additionally, DEGs associated with the SMA genes and TGF-ß signaling pathway are crucial in adult female embryogenesis. Some genes associated with particular biological processes and pathways that were identified in this study have been linked to defects in germline development, embryogenesis and reproductive behavior. In the enriched KEGG pathway analysis, Hippo signaling, oxytocin signaling and tight junction pathways were identified to play a role in Ascaris male and female reproductive systems. CONCLUSIONS: This study has provided comprehensive transcriptome profiles of discrete A. lumbricoides reproductive tissue samples, revealing the molecular basis of these functionally important tissues. The data generated from this study will provide fundamental knowledge on the reproductive biology of Ascaris and will inform future target identification for anti-ascariasis drugs and/or vaccines.


Subject(s)
Ascariasis , Ascaris lumbricoides , Animals , Male , Female , Humans , Ascaris lumbricoides/genetics , Gene Expression Profiling/methods , Transcriptome , Ovary
5.
Microorganisms ; 10(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014057

ABSTRACT

In the absence of drugs to treat or prevent COVID-19, drug repurposing can be a valuable strategy. Despite a substantial number of clinical trials, drug repurposing did not deliver on its promise. While success was observed with some repurposed drugs (e.g., remdesivir, dexamethasone, tocilizumab, baricitinib), others failed to show clinical efficacy. One reason is the lack of clear translational processes based on adequate preclinical profiling before clinical evaluation. Combined with limitations of existing in vitro and in vivo models, there is a need for a systematic approach to urgent antiviral drug development in the context of a global pandemic. We implemented a methodology to test repurposed and experimental drugs to generate robust preclinical evidence for further clinical development. This translational drug development platform comprises in vitro, ex vivo, and in vivo models of SARS-CoV-2, along with pharmacokinetic modeling and simulation approaches to evaluate exposure levels in plasma and target organs. Here, we provide examples of identified repurposed antiviral drugs tested within our multidisciplinary collaboration to highlight lessons learned in urgent antiviral drug development during the COVID-19 pandemic. Our data confirm the importance of assessing in vitro and in vivo potency in multiple assays to boost the translatability of pre-clinical data. The value of pharmacokinetic modeling and simulations for compound prioritization is also discussed. We advocate the need for a standardized translational drug development platform for mild-to-moderate COVID-19 to generate preclinical evidence in support of clinical trials. We propose clear prerequisites for progression of drug candidates for repurposing into clinical trials. Further research is needed to gain a deeper understanding of the scope and limitations of the presented translational drug development platform.

6.
Expert Rev Clin Pharmacol ; 15(8): 945-958, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36017624

ABSTRACT

INTRODUCTION: Developing and evaluating novel compounds for treatment or prophylaxis of emerging infectious diseases is costly and time-consuming. Repurposing of already available marketed compounds is an appealing option as they already have an established safety profile. This approach could substantially reduce cost and time required to make effective treatments available to fight the COVID-19 pandemic. However, this approach is challenging since many drug candidates show efficacy in in vitro experiments, but fail to deliver effect when evaluated in clinical trials. Better approaches to evaluate in vitro data are needed, in order to prioritize drugs for repurposing. AREAS COVERED: This article evaluates potential drugs that might be of interest for repurposing in the treatment of patients with COVID-19 disease. A pharmacometric simulation-based approach was developed to evaluate in vitro activity data in combination with expected clinical drug exposure, in order to evaluate the likelihood of achieving effective concentrations in patients. EXPERT OPINION: The presented pharmacometric approach bridges in vitro activity data to clinically expected drug exposures, and could therefore be a useful compliment to other methods in order to prioritize repurposed drugs for evaluation in prospective randomized controlled clinical trials.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/therapeutic use , Drug Repositioning/methods , Humans , Pandemics , Prospective Studies , SARS-CoV-2
7.
EBioMedicine ; 82: 104148, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35834886

ABSTRACT

BACKGROUND: To address the emergence of SARS-CoV-2, multiple clinical trials in humans were rapidly started, including those involving an oral treatment by nitazoxanide, despite no or limited pre-clinical evidence of antiviral efficacy. METHODS: In this work, we present a complete pre-clinical evaluation of the antiviral activity of nitazoxanide against SARS-CoV-2. FINDINGS: First, we confirmed the in vitro efficacy of nitazoxanide and tizoxanide (its active metabolite) against SARS-CoV-2. Then, we demonstrated nitazoxanide activity in a reconstructed bronchial human airway epithelium model. In a SARS-CoV-2 virus challenge model in hamsters, oral and intranasal treatment with nitazoxanide failed to impair viral replication in commonly affected organs. We hypothesized that this could be due to insufficient diffusion of the drug into organs of interest. Indeed, our pharmacokinetic study confirmed that concentrations of tizoxanide in organs of interest were always below the in vitro EC50. INTERPRETATION: These preclinical results suggest, if directly applicable to humans, that the standard formulation and dosage of nitazoxanide is not effective in providing antiviral therapy for Covid-19. FUNDING: This work was supported by the Fondation de France "call FLASH COVID-19", project TAMAC, by "Institut national de la santé et de la recherche médicale" through the REACTing (REsearch and ACTion targeting emerging infectious diseases), by REACTING/ANRS MIE under the agreement No. 21180 ('Activité des molécules antivirales dans le modèle hamster'), by European Virus Archive Global (EVA 213 GLOBAL) funded by the European Union's Horizon 2020 research and innovation program under grant agreement No. 871029 and DNDi under support by the Wellcome Trust Grant ref: 222489/Z/21/Z through the COVID-19 Therapeutics Accelerator".


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cricetinae , Humans , Nitro Compounds , Thiazoles
8.
Trends Parasitol ; 38(8): 673-682, 2022 08.
Article in English | MEDLINE | ID: mdl-35688778

ABSTRACT

African children under 5 years of age bear the main burden of global malaria mortality. Seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine (SP) plus amodiaquine (AQ) given monthly during the rainy season is a highly effective malaria intervention for children aged between 3 months and 5 years living in the Sahel region, a region of intense but seasonal malaria transmission. This intervention is now being considered for other regions of Africa where malaria parasites are more drug resistant. Dihydroartemisinin-piperaquine (DP), an artemisinin-based combination therapy (ACT), has proved to be highly effective and well tolerated in intermittent preventive treatment in pregnant women and children. This combination may be a suitable alternative for SMC. Understanding the safety, pharmacokinetic and pharmacodynamic properties of antimalarial combination therapies is crucial in optimising dosing.


Subject(s)
Antimalarials , Malaria , Amodiaquine/therapeutic use , Antimalarials/therapeutic use , Chemoprevention , Child , Child, Preschool , Drug Combinations , Drug Therapy, Combination , Female , Humans , Infant , Malaria/drug therapy , Malaria/prevention & control , Pregnancy , Pyrimethamine/adverse effects , Pyrimethamine/therapeutic use , Seasons , Sulfadoxine/adverse effects , Sulfadoxine/therapeutic use
9.
Clin Pharmacol Ther ; 112(4): 824-835, 2022 10.
Article in English | MEDLINE | ID: mdl-35598114

ABSTRACT

Chloroquine and azithromycin were developed in combination for the preventive treatment of malaria in pregnancy, and more recently were proposed as coronavirus disease 2019 (COVID-19) treatment options. Billions of doses of chloroquine have been administered worldwide over the past 70 years but concerns regarding cardiotoxicity, notably the risk of torsades de pointes (TdP), remain. This investigation aimed to characterize the pharmacokinetics and electrocardiographic effects of chloroquine and azithromycin observed in a large previously conducted healthy volunteer study. Healthy adult volunteers (n = 119) were randomized into 5 arms: placebo, chloroquine alone (600 mg base), or chloroquine with either 500 mg, 1,000 mg, or 1,500 mg of azithromycin all given daily for 3 days. Chloroquine and azithromycin levels, measured using liquid-chromatography tandem mass spectrometry, and electrocardiograph intervals were recorded at frequent intervals. Time-matched changes in the PR, QRS, and heart rate-corrected JT, and QT intervals were calculated and the relationship with plasma concentrations was evaluated using linear and nonlinear mixed-effects modeling. Chloroquine and azithromycin pharmacokinetics were described satisfactorily by two- and three-compartment distribution models, respectively. No drug-drug interaction between chloroquine and azithromycin was observed. Chloroquine resulted in concentration-dependent prolongation of the PR, QRS, JTc and QTc intervals with a minimal additional effect of azithromycin. QRS widening contributed ~ 28% of the observed QT prolongation. Chloroquine causes significant concentration-dependent delays in both ventricular depolarization and repolarization. Co-administration of azithromycin did not significantly increase these effects. The arrhythmogenic risk of TdP associated with chloroquine may have been substantially overestimated in studies which did not separate electrocardiograph QRS and JT prolongation.


Subject(s)
Antimalarials , COVID-19 Drug Treatment , Coronavirus Infections , Long QT Syndrome , Pneumonia, Viral , Torsades de Pointes , Adult , Azithromycin/adverse effects , Chloroquine , Coronavirus Infections/drug therapy , DNA-Binding Proteins/therapeutic use , Electrocardiography , Healthy Volunteers , Humans , Hydroxychloroquine , Long QT Syndrome/drug therapy , Pandemics , Pneumonia, Viral/drug therapy , Torsades de Pointes/drug therapy
10.
Lancet Infect Dis ; 22(6): 867-878, 2022 06.
Article in English | MEDLINE | ID: mdl-35276064

ABSTRACT

BACKGROUND: Late treatment failures after artemisinin-based combination therapies (ACTs) for falciparum malaria have increased in the Greater Mekong subregion in southeast Asia. Addition of amodiaquine to artemether-lumefantrine could provide an efficacious treatment for multidrug-resistant infections. METHODS: We conducted an open-label, randomised trial at five hospitals or health centres in three locations (western Cambodia, eastern Cambodia, and Vietnam). Eligible participants were male and female patients aged 2-65 years with uncomplicated Plasmodium falciparum malaria. Patients were randomly allocated (1:1 in blocks of eight to 12) to either artemether-lumefantrine alone (dosed according to WHO guidelines) or artemether-lumefantrine plus amodiaquine (10 mg base per kg/day), both given orally as six doses over 3 days. All received a single dose of primaquine (0·25 mg/kg) 24 h after the start of study treatment to limit transmission of the parasite. Parasites were genotyped, identifying artemisinin resistance. The primary outcome was Kaplan-Meier 42-day PCR-corrected efficacy against recrudescence of the original parasite, assessed by intent-to-treat. Safety was a secondary outcome. This completed trial is registered at ClinicalTrials.gov (NCT03355664). FINDINGS: Between March 18, 2018, and Jan 30, 2020, 310 patients received randomly allocated treatment; 154 received artemether-lumefantrine alone and 156 received artemether-lumefantrine plus amodiaquine. Parasites from 305 of these patients were genotyped. 42-day PCR-corrected treatment efficacy was noted in 151 (97%, 95% CI 92-99) of 156 patients with artemether-lumefantrine plus amodiaquine versus 146 (95%, 89-97) of 154 patients with artemether-lumefantrine alone; hazard ratio (HR) for recrudescence 0·6 (95% CI 0·2-1·9, p=0·38). Of the 13 recrudescences, 12 were in 174 (57%) of 305 infections with pfkelch13 mutations indicating artemisinin resistance, for which 42-day efficacy was noted in 89 (96%) of 93 infections with artemether-lumefantrine plus amodiaquine versus 73 (90%) of 81 infections with artemether-lumefantrine alone; HR for recrudescence 0·44 (95% CI 0·14-1·40, p=0·17). Artemether-lumefantrine plus amodiaquine was generally well tolerated, but the number of mild (grade 1-2) adverse events, mainly gastrointestinal, was greater in this group compared with artemether-lumefantrine alone (vomiting, 12 [8%] with artemether-lumefantrine plus amodiaquine vs three [2%] with artemether-lumefantrine alone, p=0·03; and nausea, 11 [7%] with artemether-lumefantrine plus amodiaquine vs three [2%] with artemether-lumefantrine alone, p=0·05). Early vomiting within 1 h of treatment, requiring retreatment, occurred in no patients of 154 with artemether-lumefantrine alone versus five (3%) of 156 with artemether-lumefantrine plus amodiaquine, p=0·06. Bradycardia (≤54 beats/min) of any grade was noted in 59 (38%) of 154 patients with artemether-lumefantrine alone and 95 (61%) of 156 with artemether-lumefantrine plus amodiaquine, p=0·0001. INTERPRETATION: Artemether-lumefantrine plus amodiaquine provides an alternative to artemether-lumefantrine alone as first-line treatment for multidrug-resistant P falciparum malaria in the Greater Mekong subregion, and could prolong the therapeutic lifetime of artemether-lumefantrine in malaria-endemic populations. FUNDING: Bill & Melinda Gates Foundation, Wellcome Trust.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Amodiaquine/therapeutic use , Antimalarials/therapeutic use , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemisinins/therapeutic use , Drug Combinations , Ethanolamines/therapeutic use , Female , Fluorenes/therapeutic use , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Male , Plasmodium falciparum , Recurrence , Vomiting
11.
Clin Pharmacol Ther ; 111(3): 676-685, 2022 03.
Article in English | MEDLINE | ID: mdl-34905220

ABSTRACT

Clinical studies have shown that adding a single 0.25 mg base/kg dose of primaquine to standard antimalarial regimens rapidly sterilizes Plasmodium falciparum gametocytes. However, the mechanism of action and overall impact on malaria transmission is still unknown. Using data from 81 adult Malians with P. falciparum gametocytemia who received the standard dihydroartemisinin-piperaquine treatment course and were randomized to receive either a single dose of primaquine between 0.0625 and 0.5 mg base/kg or placebo, we characterized the pharmacokinetic-pharmacodynamic relationships for transmission blocking activity. Both gametocyte clearance and mosquito infectivity were assessed. A mechanistically linked pharmacokinetic-pharmacodynamic model adequately described primaquine and carboxy-primaquine pharmacokinetics, gametocyte dynamics, and mosquito infectivity at different clinical doses of primaquine. Primaquine showed a dose-dependent gametocytocidal effect that precedes clearance. A single low dose of primaquine (0.25 mg/kg) rapidly prevented P. falciparum transmissibility.


Subject(s)
Antimalarials/pharmacology , Antimalarials/pharmacokinetics , Culicidae/parasitology , Primaquine/pharmacology , Primaquine/pharmacokinetics , Animals , Artemisinins/pharmacokinetics , Artemisinins/pharmacology , Drug Therapy, Combination/methods , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Piperazines/pharmacokinetics , Piperazines/pharmacology , Plasmodium falciparum/drug effects , Quinolines/pharmacokinetics , Quinolines/pharmacology
12.
Biology (Basel) ; 10(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499138

ABSTRACT

Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide. This study aimed to assess and predict the incidence of COVID-19 in Thailand, including the preparation and evaluation of intervention strategies. An SEIR (susceptible, exposed, infected, recovered) model was implemented with model parameters estimated using the Bayesian approach. The model's projections showed that the highest daily reported incidence of COVID-19 would be approximately 140 cases (95% credible interval, CrI: 83-170 cases) by the end of March 2020. After Thailand declared an emergency decree, the numbers of new cases and case fatalities decreased, with no new imported cases. According to the model's predictions, the incidence would be zero at the end of June if non-pharmaceutical interventions (NPIs) were strictly and widely implemented. These stringent NPIs reduced the effective reproductive number (Rt) to 0.73 per day (95% CrI: 0.53-0.93) during April and May. Sensitivity analysis showed that contact rate, hand washing, and face mask wearing effectiveness were the parameters that most influenced the number of reported daily new cases. Our evaluation shows that Thailand's intervention strategies have been highly effective in mitigating disease propagation. Continuing with these strict disease prevention behaviors could minimize the risk of a new COVID-19 outbreak in Thailand.

13.
Article in English | MEDLINE | ID: mdl-33361303

ABSTRACT

Dihydroartemisinin-piperaquine (DP) is a long-acting artemisinin combination treatment that provides effective chemoprevention and has been proposed as an alternative antimalarial drug for intermittent preventive therapy in pregnancy (IPTp). Several pharmacokinetic studies have shown that dose adjustment may not be needed for the treatment of malaria in pregnancy with DP. However, there are limited data on the optimal dosing for IPTp. This study aimed to evaluate the population pharmacokinetics of piperaquine given as IPTp in pregnant women. Pregnant women were enrolled in clinical trials conducted in Kenya and Indonesia and treated with standard 3-day courses of DP, administered in 4- to 8-week intervals from the second trimester until delivery. Pharmacokinetic blood samples were collected for piperaquine drug measurements before each treatment round, at the time of breakthrough symptomatic malaria, and at delivery. Piperaquine population pharmacokinetic properties were investigated using nonlinear mixed-effects modeling with a prior approach. In total, data from 366 Kenyan and 101 Indonesian women were analyzed. The pharmacokinetic properties of piperaquine were adequately described using a flexible transit absorption (n = 5) followed by a three-compartment disposition model. Gestational age did not affect the pharmacokinetic parameters of piperaquine. After three rounds of monthly IPTp, 9.45% (95% confidence interval [CI], 1.8 to 26.5%) of pregnant women had trough piperaquine concentrations below the suggested target concentration (10.3 ng/ml). Translational simulations suggest that providing the full treatment course of DP at monthly intervals provides sufficient protection to prevent malaria infection. Monthly administration of DP has the potential to offer optimal prevention of malaria during pregnancy. (This study has been registered at ClinicalTrials.gov under identifier NCT01669941 and in the ISRCTN under number ISRCTN34010937.).


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Pregnancy Complications, Parasitic , Quinolines , Antimalarials/therapeutic use , Drug Combinations , Female , Humans , Indonesia , Kenya , Malaria/drug therapy , Malaria/prevention & control , Malaria, Falciparum/drug therapy , Pregnancy , Pregnancy Complications, Parasitic/drug therapy , Pregnancy Complications, Parasitic/prevention & control , Quinolines/therapeutic use
14.
Parasite ; 26: 34, 2019.
Article in English | MEDLINE | ID: mdl-31166909

ABSTRACT

BACKGROUND: Gnathostoma spinigerum is a harmful parasitic nematode that causes severe morbidity and mortality in humans and animals. Effective drugs and vaccines and reliable diagnostic methods are needed to prevent and control the associated diseases; however, the lack of genome, transcriptome, and proteome databases remains a major limitation. In this study, transcriptomic and secretomic analyses of advanced third-stage larvae of G. spinigerum (aL3Gs) were performed using next-generation sequencing, bioinformatics, and proteomics. RESULTS: An analysis that incorporated transcriptome and bioinformatics data to predict excretory-secretory proteins (ESPs) classified 171 and 292 proteins into classical and non-classical secretory groups, respectively. Proteins with proteolytic (metalloprotease), cell signaling regulatory (i.e., kinases and phosphatase), and metabolic regulatory function (i.e., glucose and lipid metabolism) were significantly upregulated in the transcriptome and secretome. A two-dimensional (2D) immunomic analysis of aL3Gs-ESPs with G. spinigerum-infected human sera and related helminthiases suggested that the serine protease inhibitor (serpin) was a promising antigenic target for the further development of gnathostomiasis immunodiagnostic methods. CONCLUSIONS: The transcriptome and excretory-secretory proteome of aL3Gs can facilitate an understanding of the basic molecular biology of the parasite and identifying multiple associated factors, possibly promoting the discovery of novel drugs and vaccines. The 2D-immunomic analysis identified serpin, a protein secreted from aL3Gs, as an interesting candidate for immunodiagnosis that warrants immediate evaluation and validation.


Subject(s)
Gnathostoma/genetics , Helminth Proteins/genetics , Immunologic Tests , Larva/genetics , Proteome , Transcriptome , Animals , Antigens, Helminth/genetics , Computational Biology/methods , Gnathostomiasis/drug therapy , Helminth Proteins/isolation & purification , Humans
15.
Clin Pharmacol Ther ; 106(6): 1299-1309, 2019 12.
Article in English | MEDLINE | ID: mdl-31152555

ABSTRACT

Severe acute malnutrition (SAM) has been reported to be associated with increased malaria morbidity in Sub-Saharan African children and may affect the pharmacology of antimalarial drugs. This population pharmacokinetic (PK)-pharmacodynamic study included 131 SAM and 266 non-SAM children administered artemether-lumefantrine twice daily for 3 days. Lumefantrine capillary plasma concentrations were adequately described by two transit-absorption compartments followed by two distribution compartments. Allometrically scaled body weight and an enzymatic maturation effect were included in the PK model. Mid-upper arm circumference was associated with decreased absorption of lumefantrine (25.4% decreased absorption per 1 cm reduction). Risk of recurrent malaria episodes (i.e., reinfection) were characterized by an interval-censored time-to-event model with a sigmoid maximum-effect model describing the effect of lumefantrine. SAM children were at risk of underexposure to lumefantrine and an increased risk of malaria reinfection compared with well-nourished children. Research on optimized regimens should be considered for malaria treatment in malnourished children.


Subject(s)
Antimalarials/pharmacokinetics , Artemether, Lumefantrine Drug Combination/pharmacokinetics , Lumefantrine/pharmacokinetics , Malaria, Falciparum/drug therapy , Severe Acute Malnutrition/metabolism , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Child, Preschool , Female , Humans , Infant , Malaria, Falciparum/complications , Male , Recurrence , Severe Acute Malnutrition/complications
16.
Nat Commun ; 10(1): 480, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30696903

ABSTRACT

Young children are the population most severely affected by Plasmodium falciparum malaria. Seasonal malaria chemoprevention (SMC) with amodiaquine and sulfadoxine-pyrimethamine provides substantial benefit to this vulnerable population, but resistance to the drugs will develop. Here, we evaluate the use of dihydroartemisinin-piperaquine as an alternative regimen in 179 children (aged 2.33-58.1 months). Allometrically scaled body weight on pharmacokinetic parameters of piperaquine result in lower drug exposures in small children after a standard mg per kg dosage. A covariate-free sigmoidal EMAX-model describes the interval to malaria re-infections satisfactorily. Population-based simulations suggest that small children would benefit from a higher dosage according to the WHO 2015 guideline. Increasing the dihydroartemisinin-piperaquine dosage and extending the dose schedule to four monthly doses result in a predicted relative reduction in malaria incidence of up to 58% during the high transmission season. The higher and extended dosing schedule to cover the high transmission period for SMC could improve the preventive efficacy substantially.


Subject(s)
Antimalarials/administration & dosage , Artemisinins/administration & dosage , Malaria, Falciparum/prevention & control , Quinolines/administration & dosage , Antimalarials/pharmacokinetics , Artemisinins/pharmacokinetics , Chemoprevention , Child, Preschool , Drug Therapy, Combination , Female , Humans , Male , Quinolines/pharmacokinetics , Seasons
17.
Br J Clin Pharmacol ; 83(12): 2752-2766, 2017 12.
Article in English | MEDLINE | ID: mdl-28695570

ABSTRACT

AIMS: The aims of the present study were to evaluate the pharmacokinetic properties of dihydroartemisinin (DHA) and piperaquine, potential drug-drug interactions with concomitant primaquine treatment, and piperaquine effects on the electrocardiogram in healthy volunteers. METHODS: The population pharmacokinetic properties of DHA and piperaquine were assessed in 16 healthy Thai adults using an open-label, randomized, crossover study. Drug concentration-time data and electrocardiographic measurements were evaluated with nonlinear mixed-effects modelling. RESULTS: The developed models described DHA and piperaquine population pharmacokinetics accurately. Concomitant treatment with primaquine did not affect the pharmacokinetic properties of DHA or piperaquine. A linear pharmacokinetic-pharmacodynamic model described satisfactorily the relationship between the individually corrected QT intervals and piperaquine concentrations; the population mean QT interval increased by 4.17 ms per 100 ng ml-1 increase in piperaquine plasma concentration. Simulations from the final model showed that monthly and bimonthly mass drug administration in healthy subjects would result in median maximum QT interval prolongations of 18.9 ms and 16.8 ms, respectively, and would be very unlikely to result in prolongation of more than 50 ms. A single low dose of primaquine can be added safely to the existing DHA-piperaquine treatment in areas of multiresistant Plasmodium falciparum malaria. CONCLUSIONS: Pharmacokinetic-pharmacodynamic modelling and simulation in healthy adult volunteers suggested that therapeutic doses of DHA-piperaquine in the prevention or treatment of P. falciparum malaria are unlikely to be associated with dangerous QT prolongation.


Subject(s)
Antimalarials/pharmacokinetics , Electrocardiography , Heart Rate/drug effects , Models, Biological , Adult , Antimalarials/administration & dosage , Antimalarials/adverse effects , Artemisinins/administration & dosage , Artemisinins/pharmacokinetics , Computer Simulation , Cross-Over Studies , Drug Combinations , Drug Interactions , Healthy Volunteers , Humans , Linear Models , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Long QT Syndrome/physiopathology , Middle Aged , Nonlinear Dynamics , Primaquine/administration & dosage , Primaquine/adverse effects , Quinolines/administration & dosage , Quinolines/pharmacokinetics , Risk Assessment , Thailand , Young Adult
18.
Antimicrob Agents Chemother ; 58(12): 7340-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25267661

ABSTRACT

Dihydroartemisinin-piperaquine is an artemisinin-based combination treatment (ACT) recommended by the WHO for uncomplicated Plasmodium falciparum malaria, and it is being used increasingly for resistant vivax malaria where combination with primaquine is required for radical cure. The WHO recently reinforced its recommendations to add a single dose of primaquine to ACTs to reduce P. falciparum transmission in low-transmission settings. The pharmacokinetics of primaquine and dihydroartemisinin-piperaquine were evaluated in 16 healthy Thai adult volunteers in a randomized crossover study. Volunteers were randomized to two groups of three sequential hospital admissions to receive 30 mg (base) primaquine, 3 tablets of dihydroartemisinin-piperaquine (120/960 mg), and the drugs together at the same doses. Blood sampling was performed over 3 days following primaquine and 36 days following dihydroartemisinin-piperaquine dosing. Pharmacokinetic assessment was done with a noncompartmental approach. The drugs were well tolerated. There were no statistically significant differences in dihydroartemisinin and piperaquine pharmacokinetics with or without primaquine. Dihydroartemisinin-piperaquine coadministration significantly increased plasma primaquine levels; geometric mean ratios (90% confidence interval [CI]) of primaquine combined versus primaquine alone for maximum concentration (Cmax), area under the concentration-time curve from 0 h to the end of the study (AUC0-last), and area under the concentration-time curve from 0 h to infinity (AUC0-∞) were 148% (117 to 187%), 129% (103 to 163%), and 128% (102 to 161%), respectively. This interaction is similar to that described recently with chloroquine and may result in an enhanced radical curative effect. (This study has been registered at ClinicalTrials.gov under registration no. NCT01525511.).


Subject(s)
Antimalarials/pharmacokinetics , Artemisinins/pharmacokinetics , Primaquine/pharmacokinetics , Quinolines/pharmacokinetics , Administration, Oral , Adult , Alanine Transaminase/blood , Antimalarials/blood , Area Under Curve , Artemisinins/blood , Aspartate Aminotransferases/blood , Biological Availability , Cross-Over Studies , Drug Administration Schedule , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Primaquine/blood , Quinolines/blood , Thailand
19.
Antimicrob Agents Chemother ; 56(11): 5764-73, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22926572

ABSTRACT

Amodiaquine is effective for the treatment of Plasmodium vivax malaria, but there is little information on the pharmacokinetic and pharmacodynamic properties of amodiaquine in pregnant women with malaria. This study evaluated the population pharmacokinetic and pharmacodynamic properties of amodiaquine and its biologically active metabolite, desethylamodiaquine, in pregnant women with P. vivax infection and again after delivery. Twenty-seven pregnant women infected with P. vivax malaria on the Thai-Myanmar border were treated with amodiaquine monotherapy (10 mg/kg/day) once daily for 3 days. Nineteen women, with and without P. vivax infections, returned to receive the same amodiaquine dose postpartum. Nonlinear mixed-effects modeling was used to evaluate the population pharmacokinetic and pharmacodynamic properties of amodiaquine and desethylamodiaquine. Amodiaquine plasma concentrations were described accurately by lagged first-order absorption with a two-compartment disposition model followed by a three-compartment disposition of desethylamodiaquine under the assumption of complete in vivo conversion. Body weight was implemented as an allometric function on all clearance and volume parameters. Amodiaquine clearance decreased linearly with age, and absorption lag time was reduced in pregnant patients. Recurrent malaria infections in pregnant women were modeled with a time-to-event model consisting of a constant-hazard function with an inhibitory effect of desethylamodiaquine. Amodiaquine treatment reduced the risk of recurrent infections from 22.2% to 7.4% at day 35. In conclusion, pregnancy did not have a clinically relevant impact on the pharmacokinetic properties of amodiaquine or desethylamodiaquine. No dose adjustments are required in pregnancy.


Subject(s)
Amodiaquine/analogs & derivatives , Amodiaquine/pharmacokinetics , Antimalarials/pharmacokinetics , Malaria, Vivax/drug therapy , Plasmodium vivax/drug effects , Pregnancy Complications, Parasitic/drug therapy , Secondary Prevention , Adolescent , Adult , Amodiaquine/blood , Amodiaquine/pharmacology , Antimalarials/blood , Antimalarials/pharmacology , Biotransformation , Body Weight , Drug Administration Schedule , Female , Humans , Malaria, Vivax/blood , Malaria, Vivax/parasitology , Nonlinear Dynamics , Plasmodium vivax/growth & development , Pregnancy , Pregnancy Complications, Parasitic/blood , Pregnancy Complications, Parasitic/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...