Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 255: 128309, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37995778

ABSTRACT

PhoSL (Pholiota squarrosa Lectin) has an exceptional binding affinity for biomolecules with core-fucosylated N-glycans. This modification involves the addition of fucose to the inner N-acetylglucosamine within the N-glycan structure and is known to influence many physiological processes. Nevertheless, the molecular interactions underlying high-affinity binding of native PhoSL to core-fucosylated N-glycans remain largely unknown. In this study, we devised a strategy to produce PhoSL with the essential structural characteristics of the native protein (n-PhoSL). To do so, a fusion protein was expressed in E. coli and purified. Then, enzymatic cleavage and incubation with glutathione were utilized to recapitulate the native primary structure and disulfide bonding pattern. Subsequently, we identified the residues crucial for n-PhoSL binding to core-fucosylated chitobiose (N2F) via NMR spectroscopy. Additionally, crystal structures were solved for both apo n-PhoSL and its N2F complex. These analyses suggested a pivotal role of the N-terminal amine in maintaining the integrity of the binding pocket and actively contributing to core-fucose recognition. In support of this idea, the inclusion of additional residues at the N-terminus considerably reduced binding affinity and PhoSL cytotoxicity toward breast cancer cells. Taken together, these findings can facilitate the utilization of PhoSL in basic research, diagnostics and therapeutic strategies.


Subject(s)
Escherichia coli , Fucose , Fucose/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Polysaccharides/chemistry , Lectins/chemistry , Glycosylation
2.
Int J Mol Sci ; 24(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139184

ABSTRACT

The Escherichia coli ATP-dependent ClpYQ protease constitutes ClpY ATPase/unfoldase and ClpQ peptidase. The Tyr91st residue within the central pore-I site of ClpY-hexamer is important for unfolding and translocating substrates into the catalytic site of ClpQ. We have identified the degron site (GFIMRP147th) of SulA, a cell-division inhibitor recognized by ClpYQ and that the Phe143rd residue in degron site is necessary for SulA native folded structure. However, the functional association of this degron site with the ClpYQ degrader is unknown. Here, we investigated the molecular insights into substrate recognition and discrimination by the ClpYQ protease. We found that the point mutants ClpYY91FQ, ClpYY91HQ, and ClpYY91WQ, carrying a ring structure at the 91st residue of ClpY, efficiently degraded their natural substrates, evidenced by the suppressed bacterial methyl-methane-sulfonate (MMS) sensitivity, the reduced ß-galactosidase activity of cpsB::lacZ, and the lowest amounts of MBP-SulA in both in vivo and in vitro degradation analyses. Alternatively, mimicking the wild-type SulA, SulAF143H, SulAF143K and SulAF143W, harboring a ring structure or a cation side-group in 143rd residue of SulA, were efficiently degraded by ClpYQ in the bacterial cells, also revealing shorter half-lives at 41 °C and higher binding affinities towards ClpY in pull-down assays. Finally, ClpYY91FQ and ClpYY91HQ, were capable of effectively degrading SulAF143H and SulAF143K, highlighting a correspondingly functional interaction between the SulA 143rd and ClpY 91st residues. According to the interchangeable substituted amino acids, our results uniquely indicate that a transient π-π or cation-π interaction between the SulA 143rd and ClpY 91st residues could be aptly gripped between the degron site of substrates and the pore site of proteases (degraders) for substrate recognition and discrimination of the processive degradation.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Peptide Hydrolases/metabolism , Degrons , Endopeptidases/metabolism , ATP-Dependent Proteases/metabolism , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism
3.
Molecules ; 28(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37513282

ABSTRACT

Pseudomonas sp. D01, capable of growing in tributyrin medium, was isolated from the gut microbiota of yellow mealworm. By using in silico analyses, we discovered a hypothesized esterase encoding gene in the D01 bacterium, and its encoded protein, EstD04, was classified as a bacterial hormone-sensitive lipase (bHSL) of the type IV lipase family. The study revealed that the recombinant EstD04-His(6x) protein exhibited esterase activity and broad substrate specificity, as it was capable of hydrolyzing p-nitrophenyl derivatives with different acyl chain lengths. By using the most favorable substrate p-nitrophenyl butyrate (C4), we defined the optimal temperature and pH value for EstD04 esterase activity as 40 °C and pH 8, respectively, with a catalytic efficiency (kcat/Km) of 6.17 × 103 mM-1 s-1 at 40 °C. EstD04 demonstrated high stability between pH 8 and 10, and thus, it might be capably used as an alkaline esterase in industrial applications. The addition of Mg2+ and NH4+, as well as DMSO, could stimulate EstD04 enzyme activity. Based on bioinformatic motif analyses and tertiary structural simulation, we determined EstD04 to be a typical bHSL protein with highly conserved motifs, including a triad catalytic center (Ser160, Glu253, and His283), two cap regions, hinge sites, and an oxyanion hole, which are important for the type IV enzyme activity. Moreover, the sequence analysis suggested that the two unique discrete cap regions of EstD04 may contribute to its alkali mesophilic nature, allowing EstD04 to exhibit extremely distinct physiological properties from its evolutionarily closest esterase.


Subject(s)
Gastrointestinal Microbiome , Tenebrio , Animals , Esterases/metabolism , Tenebrio/metabolism , Amino Acid Sequence , Pseudomonas/metabolism , Sterol Esterase/metabolism , Bacteria/metabolism , Substrate Specificity , Hydrogen-Ion Concentration , Cloning, Molecular , Enzyme Stability
4.
MAbs ; 14(1): 2029675, 2022.
Article in English | MEDLINE | ID: mdl-35133941

ABSTRACT

The functional interleukin 6 (IL-6) signaling complex is a hexameric structure composed of IL-6, IL-6Rα, and the signaling receptor gp130. There are three different modes of IL-6 signaling, classic signaling, trans-signaling, and trans-presentation, which are not functionally redundant and mediate pleiotropic effects on both physiological and pathophysiological states. Monoclonal antibodies against IL-6 or IL-6Rα have been successfully developed for clinical application. However, designing therapeutic interventions that block specific modes of IL-6 signaling in a pathologically relevant manner remains a great challenge. Here, we constructed a fusion protein Hyper-IL-6 (HyIL-6) composed of human IL-6 and IL-6Rα to develop specific blocking antibodies against the IL-6/IL-6Rα complex. We successfully screened the monoclonal antibody C14mab, which can bind to HyIL-6 with the binding constant 2.86 × 10-10 and significantly inhibit IL-6/IL-6Rα/gp130 complex formation. In vitro, C14mab effectively inhibited HyIL-6-stimulated signal transducer and activator of transcription 3 (STAT3) activation and related vascular endothelial growth factor (VEGF) induction. Moreover, C14mab efficaciously suppressed HyIL-6-induced acute phase response in vivo. Our data from hydrogen-deuterium exchange mass spectrometry demonstrate that C14mab mainly binds to site IIIa of IL-6 and blocks the final step in the interaction between gp130 and IL-6/IL-6Rα complex. Additionally, data from enzyme-linked immunosorbent assays and kinetics assays indicate that C14mab interacts simultaneously with IL-6 and IL-6Rα, while it does not interact with IL-6Rα alone. The unique features of C14mab may offer a novel alternative for IL-6 blockade and illuminate a better therapeutic intervention targeting IL-6.


Subject(s)
Interleukin-6 , Receptors, Interleukin-6 , Antibodies, Monoclonal , Cytokine Receptor gp130/chemistry , Cytokine Receptor gp130/metabolism , Epitopes , Humans , Interleukin-6/metabolism , Receptors, Interleukin-6/chemistry , Receptors, Interleukin-6/metabolism , Vascular Endothelial Growth Factor A
5.
EMBO J ; 40(4): e105450, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33347625

ABSTRACT

Wnt/ß-catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/ß-catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell-specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/ß-catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of ß-catenin to stabilize ß-catenin-TCF4 complex and facilitate the transactivation of Wnt/ß-catenin signaling targets. Accordingly, activated ß-catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/ß-catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.


Subject(s)
Cell Nucleus/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/secondary , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/pathology , Proteoglycans/metabolism , beta Catenin/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Proteins/genetics , Neoplastic Stem Cells/metabolism , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proteoglycans/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , beta Catenin/genetics
6.
Plant Physiol ; 184(3): 1585-1600, 2020 11.
Article in English | MEDLINE | ID: mdl-32878973

ABSTRACT

Mammalian histone deacetylases (HDACs) undergo phosphorylation to regulate their localization, activity, and function. However, little is known about the regulation of plant HDAC function and activity by phosphorylation. Here, we report the crystal structure of the Reduced Potassium Dependency3/Histone Deacetylase1 (RPD3/HDA1) type class II histone deacetylase HDA15 in Arabidopsis (Arabidopsis thaliana). The histone deacetylase domain of HDA15 (HDA15HD) assembles as tetrameric forms with each monomer composed of 12 α-helices and 9 ß-sheets. The L1 loop and ß2 sheet of HDA15HD are the essential interfaces for the tetramer formation. The N-terminal zinc finger domain enhances HDA15HD dimerization and increases its enzymatic activity. Furthermore, HDA15 can also be phosphorylated at Ser-448 and Ser-452 in etiolated seedlings. The HDA15 phosphorylation status determines its subnuclear localization and oligomerization. Phosphomimetics of HDA15 partially disrupt its oligomerization and cause loss of enzymatic activity and translocation from the nucleolus into nucleoplasm. Together, these data indicate that phosphorylation plays a critical role in regulating the structure and function of HDA15.


Subject(s)
Arabidopsis/chemistry , Arabidopsis/metabolism , Histone Deacetylases/chemistry , Histone Deacetylases/metabolism , Molecular Structure , Phosphorylation
7.
Proteins ; 88(1): 69-81, 2020 01.
Article in English | MEDLINE | ID: mdl-31293000

ABSTRACT

In class II transcription activation, the transcription factor normally binds to the promoter near the -35 position and contacts the domain 4 of σ factors (σ4 ) to activate transcription. However, σ4 of σ70 appears to be poorly folded on its own. Here, by fusing σ4 with the RNA polymerase ß-flap-tip-helix, we constructed two σ4 chimera proteins, one from σ70σ470c and another from σSσ4Sc of Klebsiella pneumoniae. The two chimera proteins well folded into a monomeric form with strong binding affinities for -35 element DNA. Determining the crystal structure of σ4Sc in complex with -35 element DNA revealed that σ4Sc adopts a similar structure as σ4 in the Escherichia coli RNA polymerase σS holoenzyme and recognizes -35 element DNA specifically by several conserved residues from the helix-turn-helix motif. By using nuclear magnetic resonance (NMR), σ470c was demonstrated to recognize -35 element DNA similar to σ4Sc . Carr-Purcell-Meiboom-Gill relaxation dispersion analyses showed that the N-terminal helix and the ß-flap-tip-helix of σ470c have a concurrent transient α-helical structure and DNA binding reduced the slow dynamics on σ470c . Finally, only σ470c was shown to interact with the response regulator PmrA and its promoter DNA. The chimera proteins are capable of -35 element DNA recognition and can be used for study with transcription factors or other factors that interact with domain 4 of σ factors.


Subject(s)
Bacterial Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation, Bacterial , Klebsiella pneumoniae/metabolism , Sigma Factor/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Crystallography, X-Ray , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Klebsiella pneumoniae/chemistry , Klebsiella pneumoniae/genetics , Models, Molecular , Promoter Regions, Genetic , Protein Binding , Protein Interaction Maps , Sigma Factor/chemistry , Sigma Factor/genetics , Transcriptional Activation
8.
Sci Rep ; 8(1): 5410, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615721

ABSTRACT

Cyclophilin 1 (TvCyP1), a cyclophilin type peptidyl-prolyl isomerase present in the human parasite Trichomonas vaginalis, interacts with Myb1 and assists in its nuclear translocation. Myb1 regulates the expression of ap65-1 gene that encodes for a disease causing cytoadherence enzyme. Here, we determined the crystal structures of TvCyP1 and its complex with the minimum TvCyP1-binding sequence of Myb1 (Myb1104-111), where TvCyP1 formed a homodimer, unlike other single domain cyclophilins. In the complex structure, one Myb1104-111 peptide was bound to each TvCyP1 protomer, with G106-P107 and Y105 fitting well into the active site and auxiliary S2 pocket, respectively. NMR data further showed that TvCyP1 can catalyze the cis/trans isomerization of P107 in Myb1104-111. Interestingly, in the well-folded Myb1 protein (Myb135-141), the minimum binding sequence adopted a different conformation from that of unstructured Myb1104-111 peptide, that could make P107 binding to the active site of TvCyP1 difficult. However, NMR studies showed that similar to Myb1104-111 peptide, Myb135-141 also interacted with the active site of TvCyP1 and the dynamics of the Myb135-141 residues near P107 was reduced upon interaction. Together, the structure of TvCyP1 and detailed structural insights on TvCyP1-Myb1 interaction provided here could pave the way for newer drugs to treat drug-resistant strains.


Subject(s)
Cyclophilins/chemistry , Cyclophilins/metabolism , Protein Multimerization , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Transcription Factors/metabolism , Trichomonas vaginalis , Binding Sites , Models, Molecular , Peptidylprolyl Isomerase/metabolism , Protein Binding , Protein Domains , Protein Stability , Protein Structure, Quaternary
9.
PLoS One ; 12(4): e0175051, 2017.
Article in English | MEDLINE | ID: mdl-28384299

ABSTRACT

Previously, we identified that both fingers 1 and 2 in the three Cys2His2 zinc-finger domains (TZD) of testis zinc-finger protein specifically bind to its cognate DNA; however, finger 3 is non-sequence-specific. To gain insights into the interaction mechanism, here we further investigated the DNA-binding characteristics of TZD bound to non-specific DNAs and its finger segments bound to cognate DNA. TZD in non-specific DNA binding showed smaller chemical shift perturbations, as expected. However, the direction of shift perturbation, change of DNA imino-proton NMR signal, and dynamics on the 15N backbone atom significantly differed between specific and non-specific binding. Using these unique characteristics, we confirmed that the three single-finger segments (TZD1, TZD2 and TZD3) and the two-finger segment (TZD23) non-specifically bind to the cognate DNA. In comparison, the other two-finger segment (TZD12) binding to the cognate DNA features simultaneous non-specific and semi-specific binding, both slowly exchanged in terms of NMR timescale. The process of TZD binding to the cognate DNA is likely stepwise: initially TZD non-specifically binds to DNA, then fingers 1 and 2 insert cooperatively into the major groove of DNA by semi-specific binding, and finally finger 3 non-specifically binds to DNA, which promotes the specific binding on fingers 1 and 2 and stabilizes the formation of a specific TZD-DNA complex.


Subject(s)
Cysteine/metabolism , DNA/metabolism , Histidine/metabolism , Testis/metabolism , Zinc Fingers , Animals , Magnetic Resonance Spectroscopy , Male , Mice
10.
Nucleic Acids Res ; 40(1): 449-60, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21908401

ABSTRACT

Trichomonas vaginalis Myb3 transcription factor (tvMyb3) recognizes the MRE-1 promoter sequence and regulates ap65-1 gene, which encodes a hydrogenosomal malic enzyme that may play a role in the cytoadherence of the parasite. Here, we identified tvMyb3(53-180) as the essential fragment for DNA recognition and report the crystal structure of tvMyb3(53-180) bound to MRE-1 DNA. The N-terminal fragment adopts the classical conformation of an Myb DNA-binding domain, with the third helices of R2 and R3 motifs intercalating in the major groove of DNA. The C-terminal extension forms a ß-hairpin followed by a flexible tail, which is stabilized by several interactions with the R3 motif and is not observed in other Myb proteins. Interestingly, this unique C-terminal fragment does not stably connect with DNA in the complex structure but is involved in DNA binding, as demonstrated by NMR chemical shift perturbation, (1)H-(15)N heteronuclear-nuclear Overhauser effect and intermolecular paramagnetic relaxation enhancement. Site-directed mutagenesis also revealed that this C-terminal fragment is crucial for DNA binding, especially the residue Arg(153) and the fragment K(170)KRK(173). We provide a structural basis for MRE-1 DNA recognition and suggest a possible post-translational regulation of tvMyb3 protein.


Subject(s)
DNA-Binding Proteins/chemistry , Promoter Regions, Genetic , Protozoan Proteins/chemistry , Transcription Factors/chemistry , Trichomonas vaginalis , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , DNA, Protozoan/chemistry , DNA-Binding Proteins/genetics , Models, Molecular , Molecular Sequence Data , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Protozoan Proteins/genetics , Sequence Alignment , Transcription Factors/genetics
11.
BMC Bioinformatics ; 11: 334, 2010 Jun 18.
Article in English | MEDLINE | ID: mdl-20565873

ABSTRACT

BACKGROUND: Determination of protein-DNA complex structures with both NMR and X-ray crystallography remains challenging in many cases. High Ambiguity-Driven DOCKing (HADDOCK) is an information-driven docking program that has been used to successfully model many protein-DNA complexes. However, a protein-DNA complex model whereby the protein wraps around DNA has not been reported. Defining the ambiguous interaction restraints for the classical three-Cys2His2 zinc-finger proteins that wrap around DNA is critical because of the complicated binding geometry. In this study, we generated a Zif268-DNA complex model using three different sets of ambiguous interaction restraints (AIRs) to study the effect of the geometric distribution on the docking and used this approach to generate a newly reported Sp1-DNA complex model. RESULTS: The complex models we generated on the basis of two AIRs with a good geometric distribution in each domain are reasonable in terms of the number of models with wrap-around conformation, interface root mean square deviation, AIR energy and fraction native contacts. We derived the modeling approach for generating a three-Cys2His2 zinc-finger-DNA complex model according to the results of docking studies using the Zif268-DNA and other three crystal complex structures. Furthermore, the Sp1-DNA complex model was calculated with this approach, and the interactions between Sp1 and DNA are in good agreement with those previously reported. CONCLUSIONS: Our docking data demonstrate that two AIRs with a reasonable geometric distribution in each of the three-Cys2His2 zinc-finger domains are sufficient to generate an accurate complex model with protein wrapping around DNA. This approach is efficient for generating a zinc-finger protein-DNA complex model for unknown complex structures in which the protein wraps around DNA. We provide a flowchart showing the detailed procedures of this approach.


Subject(s)
DNA/chemistry , DNA/metabolism , Models, Molecular , Software , Transcription Factors/chemistry , Transcription Factors/metabolism , Zinc Fingers , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Nuclear Magnetic Resonance, Biomolecular , Sp1 Transcription Factor/chemistry , Sp1 Transcription Factor/metabolism
12.
Proteins ; 78(10): 2202-12, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20544958

ABSTRACT

The C-terminal three-Cys(2)His(2) zinc-finger domain (TZD) of mouse testis zinc-finger protein binds to the 5'-TGTACAGTGT-3' at the Aie1 (aurora-C) promoter with high specificity. Interestingly, the primary sequence of TZD is unique, possessing two distinct linkers, TGEKP and GAAP, and distinct residues at presumed DNA binding sites at each finger, especially finger 3. A K(d) value of approximately 10(-8) M was obtained from surface plasmon resonance analysis for the TZD-DNA complex. NMR structure of the free TZD showed that each zinc finger forms a typical beta beta alpha fold. On binding to DNA, chemical shift perturbations and the R(2) transverse relaxation rate in finger 3 are significantly smaller than those in fingers 1 and 2, which indicates that the DNA binding affinity in finger 3 is weaker. Furthermore, the shift perturbations between TZD in complex with the cognate DNA and its serial mutants revealed that both ADE7 and CYT8, underlined in 5'-ATATGTACAGTGTTAT-3', are critical in specific binding, and the DNA binding in finger 3 is sequence independent. Remarkably, the shift perturbations in finger 3 on the linker mutation of TZD (GAAP mutated to TGEKP) were barely detected, which further indicates that finger 3 does not play a critical role in DNA sequence-specific recognition. The complex model showed that residues important for DNA binding are mainly located on positions -1, 2, 3, and 6 of alpha-helices in fingers 1 and 2. The DNA sequence and nonsequence-specific bindings occurring simultaneously in TZD provide valuable information for better understanding of protein-DNA recognition.


Subject(s)
Protein Interaction Domains and Motifs , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Zinc Fingers , Amino Acid Sequence , Animals , Binding Sites , Circular Dichroism , Computer Simulation , Conserved Sequence , Kinetics , Mice , Models, Molecular , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , Oligonucleotides/chemical synthesis , Oligonucleotides/metabolism , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Surface Plasmon Resonance , Zinc/chemistry
13.
Nucleic Acids Res ; 37(7): 2381-94, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19246540

ABSTRACT

The transcription regulator, tvMyb1, is the first Myb family protein identified in Trichomonas vaginalis. Using an electrophoretic mobility shift assay, we defined the amino-acid sequence from Lys(35) to Ser(141) (tvMyb1(35-141)) as the minimal DNA-binding domain, encompassing two Myb-like DNA-binding motifs (designated as R2 and R3 motifs) and an extension of 10 residues at the C-terminus. NMR solution structures of tvMyb1(35-141) show that both the R2 and R3 motifs adopt helix-turn-helix conformations while helix 6 in the R3 motif is longer than its counterpart in vertebrate Myb proteins. The extension of helix 6 was then shown to play an important role in protein stability as well as in DNA-binding activity. The structural basis for the tvMyb1(35-141)/DNA interaction was investigated using chemical shift perturbations, residual dipolar couplings, DNA specificity data and data-driven macromolecular docking by HADDOCK. Our data indicate that the orientation between R2 and R3 motifs dramatically changes upon binding to DNA so as to recognize the DNA major groove through a number of key contacts involving residues in helices 3 and 6. The tvMyb1(35-141)/DNA complex model furthers our understanding of DNA recognition by Myb proteins and this approach could be applied in determining the complex structures involving proteins with multiple domains.


Subject(s)
DNA-Binding Proteins/chemistry , Protozoan Proteins/chemistry , Transcription Factors/chemistry , Trichomonas vaginalis , Animals , Binding Sites , DNA/chemistry , DNA/metabolism , DNA-Binding Proteins/metabolism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Interaction Domains and Motifs , Protozoan Proteins/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...