Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
RSC Adv ; 10(70): 43117-43128, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-35514908

ABSTRACT

Based on an integrated study of magnetic susceptibility, specific heat, and thermal expansion of single-crystal LaCoO3 free from cobalt and oxygen vacancies, two narrow spin gaps are identified before and after the phonon softening of gap size ΔE ∼ 0.5 meV in a CoO6-octahedral crystal electric field (CEF) and the thermally activated spin gap Q ∼ 25 meV, respectively. Significant excitation of Co3+ spins from a low-spin (LS) to a high-spin (HS) state is confirmed by the thermal activation behavior of spin susceptibility χ S of energy gap Q ∼ 25 meV, which follows a two-level Boltzmann distribution to saturate at a level of 50% LS/50% HS statistically above ∼200 K, without the inclusion of a postulated intermediate spin (IS) state. A threefold increase in the thermal expansion; coefficient (α) across the same temperature range as that of thermally activated HS population growth is identified, which implies the non-trivial spin-orbit-phonon coupling caused the bond length of Co3+(LS↔HS)-O fluctuation and the local lattice distortion. The unusually narrow gap of ΔE ∼ 0.5 meV for the CoO6 octahedral CEF between eg-t2g indicates a more isotropic negative charge distribution within the octahedral CEF environment, which is verified by the Electron Energy Loss Spectroscopy (EELS) study to show nontrivial La-O covalency.

2.
Phys Rev Lett ; 122(11): 116101, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30951360

ABSTRACT

We report inelastic He atom scattering measurements of the (001) surface phonon dispersion of the topological crystalline insulator Pb_{0.7}Sn_{0.3}Se. This material exhibits a temperature-dependent topological transition, so we measure the surface dispersion curves in both the trivial and nontrivial phases. We identify that, peculiarly, most surface modes are resonances, rather than pure surface states. We find that a shear vertical surface resonance branch around 9.0 meV dramatically changes on going from the trivial to the topological phase. We associate this remarkable change with the emergence of surface Dirac fermions. We use the measured dispersion of this resonance branch to determine the corresponding mode-dependent electron-phonon coupling λ_{ν}(q).

3.
Sci Rep ; 9(1): 3223, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30824718

ABSTRACT

We combined spectroscopic ellipsometry, Raman scattering spectroscopy, and first-principles calculations to explore the optical properties of YBaCuFeO5 single crystals. Measuring the optical absorption spectrum of YBaCuFeO5 at room temperature revealed a direct optical band gap at approximately 1.41 eV and five bands near 1.69, 2.47, 3.16, 4.26, and 5.54 eV. Based on first-principles calculations, the observed optical excitations were appropriately assigned. Analysis of the temperature dependence of the band gap indicated anomalies in antiferromagnetic phase transition at 455 and 175 K. Additionally, a hardening in the frequency of the Eg phonon mode was observed at 175 K. The value of the spin-phonon coupling constant was 15.7 mRy/Å2. These results suggest a complex nature of spin-charge-lattice interactions in YBaCuFeO5.

4.
Sci Rep ; 8(1): 15779, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30361523

ABSTRACT

This investigation reports on anisotropy in the magnetic interaction, lattice-orbital coupling and degree of phonon softening in single crystal Ni3TeO6 (NTO) using temperature- and polarization-dependent X-ray absorption spectroscopic techniques. The magnetic field-cooled and zero-field-cooled measurements and temperature-dependent Ni L3,2-edge X-ray magnetic circular dichroism spectra of NTO reveal a weak Ni-Ni ferromagnetic interaction close to ~60 K (TSO: temperature of the onset of spin ordering) with a net alignment of Ni spins (the uncompensated components of the Ni moments) along the crystallographic c-axis, which is absent from the ab-plane. Below the Néel temperature, TN~ 52 K, NTO is stable in the antiferromagnetic state with its spin axis parallel to the c-axis. The Ni L3,2-edge X-ray linear dichroism results indicate that above TSO, the Ni 3d eg electrons preferentially occupy the out-of-plane 3d3z2-r2 orbitals and switch to the in-plane 3dx2-y2 orbitals below TSO. The inherent distortion of the NiO6 octahedra and anisotropic nearest-neighbor Ni-O bond lengths between the c-axis and the ab-plane of NTO, followed by anomalous Debye-Waller factors and orbital-lattice in conjunction with spin-phonon couplings, stabilize the occupied out-of-plane (3d3z2-r2) and in-plane (3dx2-y2) Ni eg orbitals above and below TSO, respectively.

5.
Phys Rev Lett ; 121(6): 067602, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30141664

ABSTRACT

In this Letter, we report a resonant x-ray scattering measurement of stripelike charge order in the 1/8th doped component of electronically phase-separated, orthorhombic La_{2}CuO_{4+y}. This observation is coupled to the absence of any resonant (001) peak, which at different resonant energies has been identified with the presence of low-temperature-tetragonal-like structural tilt patterns or nematicity in the CuO planes. Thus, we provide evidence that structural pinning is not necessary for the formation of static charge stripes and that the relationship between charge nematicity and stripes may not be simple.

6.
J Phys Condens Matter ; 30(1): 015803, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29135472

ABSTRACT

We report the single crystal growth and transport properties of a Weyl semimetal TaAs. Unsaturated large magnetoresistance of about 22 100% at 2 K and 9 T is observed. From the Hall measurement, carrier concentrations n = 4.608 × 1024 m-3 and p = 3.099 × 1024 m-3, and mobilities µ p = 2.502 m2 V-1 s-1 and µ n = 16.785 m2 V-1 s-1 at 2 K are extracted. The de Haas-van Alphen oscillations at 2 K and 9 T suggest the presence of a Fermi surface, and the quantum electronic parameters such as effective cyclotron mass and Dingle temperature were obtained using Lifshitz-Kosevich fitting. Temperature dependent resistivity measurements at different static magnetic fields suggest the formation of an insulating gap in the Weyl semimetal TaAs. An angle-resolved photoemission spectroscopy study reveals Fermi arc surface states with different shaped features such as a long elliptical contour around each [Formula: see text] point, a bowtie-shaped contour around each [Formula: see text] point, and a crescent-shaped feature near the midpoint of each [Formula: see text] line.

7.
J Phys Condens Matter ; 29(14): 145801, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28248641

ABSTRACT

Using magnetization, dielectric constant, and neutron diffraction measurements on a high quality single crystal of YBaCuFeO5 (YBCFO), we demonstrate that the crystal shows two antiferromagnetic transitions at [Formula: see text] K and [Formula: see text] K, and displays a giant dielectric constant with a characteristic of the dielectric relaxation at T N2. It does not show the evidence of the electric polarization for the crystal used for this study. The transition at T N1 corresponds with a paramagnetic to antiferromagnetic transition with a magnetic propagation vector doubling the unit cell along three crystallographic axes. Upon cooling, at T N2, the commensurate spin ordering transforms to a spiral magnetic structure with a propagation vector of ([Formula: see text] [Formula: see text] [Formula: see text]), where [Formula: see text], [Formula: see text], and [Formula: see text] are odd, and the incommensurability δ is temperature dependent. Around the transition boundary at T N2, both commensurate and incommensurate spin ordering coexist.

8.
Sci Rep ; 7(1): 161, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28279015

ABSTRACT

The local electronic and atomic structures of the high-quality single crystal of SrFeO3-δ (δ~0.19) were studied using temperature-dependent x-ray absorption and valence-band photoemission spectroscopy (VB-PES) to investigate the origin of anisotropic resistivity in the ab-plane and along the c-axis close to the region of thermal hysteresis (near temperature for susceptibility maximum, Tm~78 K). All experiments herein were conducted during warming and cooling processes. The Fe L 3,2-edge X-ray linear dichroism results show that during cooling from room temperature to below the transition temperature, the unoccupied Fe 3d e g states remain in persistently out-of-plane 3d 3z2-r2 orbitals. In contrast, in the warming process below the transition temperature, they change from 3d 3z2-r2 to in-plane 3d x2-y2 orbitals. The nearest-neighbor (NN) Fe-O bond lengths also exhibit anisotropic behavior in the ab-plane and along the c-axis below Tm. The anisotropic NN Fe-O bond lengths and Debye-Waller factors stabilize the in-plane Fe 3d x2-y2 and out-of-plane 3d 3z2-r2 orbitals during warming and cooling, respectively. Additionally, a VB-PES study further confirms that a relative band gap opens at low temperature in both the ab-plane and along the c-axis, providing the clear evidence of the charge-density-wave nature of SrFeO3-δ (δ~0.19) single crystal.

9.
J Phys Condens Matter ; 29(9): 095601, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28098075

ABSTRACT

The anisotropic superconducting properties of PbTaSe2 single crystal is reported. Superconductivity with T c = 3.83 ± 0.02 K has been characterized fully with electrical resistivity ρ(T), magnetic susceptibility χ(T), and specific heat C p (T) measurements using single crystal samples. The superconductivity is type-II with lower critical field H c1 and upper critical field H c2 of 65 and 450 Oe (H⊥ to the ab-plane), 140 and 1500 Oe (H|| to the ab-plane), respectively. These results indicate that the superconductivity of PbTaSe2 is anisotropic. The superconducting anisotropy, electron-phonon coupling λ ep, superconducting energy gap Δ0, and the specific heat jump ΔC/γT c at T c confirms that PbTaSe2 can be categorized as a bulk superconductor.

10.
Sci Rep ; 7: 40603, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28098209

ABSTRACT

High quality single crystal ZrSiS as a theoretically predicted Dirac semimetal has been grown successfully using a vapor phase transport method. The single crystals of tetragonal structure are easy to cleave into perfect square-shaped pieces due to the van der Waals bonding between the sulfur atoms of the quintuple layers. Physical property measurement results including resistivity, Hall coefficient (RH), and specific heat are reported. The transport and thermodynamic properties suggest a Fermi liquid behavior with two Fermi pockets at low temperatures. At T = 3 K and magnetic field of Hǁc up to 9 Tesla, large magneto-resistance up to 8500% and 7200% for Iǁ(100) and Iǁ(110) were found. Shubnikov de Haas (SdH) oscillations were identified from the resistivity data, revealing the existence of two Fermi pockets at the Fermi level via the fast Fourier transform (FFT) analysis. The Hall coefficient (RH) showed hole-dominated carriers with a high mobility of 3.05 × 104 cm2 V-1 s-1 at 3 K. ZrSiS has been confirmed to be a Dirac semimetal by the Dirac cone mapping near the X-point via angle resolved photoemission spectroscopy (ARPES) with a Dirac nodal line near the Fermi level identified using scanning tunneling spectroscopy (STS).

11.
Sci Rep ; 6: 36970, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27845377

ABSTRACT

Thermal transport of quantum magnets has elucidated the nature of low energy elementary excitations and complex interplay between those excited states via strong scattering of thermal carriers. BiCu2PO6 is a unique frustrated spin-ladder compound exhibiting highly anisotropic spin excitations that contain both itinerant and localized dispersion characters along the b- and a-axes respectively. Here, we investigate thermal conductivity κ of BiCu2PO6 under high magnetic fields (H) of up to 30 tesla. A dip-feature in κ, located at ~15 K at zero-H along all crystallographic directions, moves gradually toward lower temperature (T) with increasing H, thus resulting in giant suppression by a factor of ~30 near the critical magnetic field of Hc ≅ 23.5 tesla. The giant H- and T-dependent suppression of κ can be explained by the combined result of resonant scattering of phononic heat carriers with magnetic energy levels and increased phonon scattering due to enhanced spin fluctuation at Hc, unequivocally revealing the existence of strong spin-phonon coupling. Moreover, we find an experimental indication that the remaining magnetic heat transport along the b-axis becomes almost gapless at the magnetic quantum critical point realized at Hc.

13.
Sci Rep ; 6: 27487, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27263441

ABSTRACT

Cadmium arsenide (Cd3As2) is known for its inverted band structure and ultra-high electron mobility. It has been theoretically predicted and also confirmed by ARPES experiments to exhibit a 3D Dirac semimetal phase containing degenerate Weyl nodes. From magneto-transport measurements in high quality single crystals of Cd3As2, a small effective mass m(*) ≈ 0.05 me is determined from the Shubnikov-de Haas (SdH) oscillations. In certain field orientations, we find a splitting of the SdH oscillation frequency in the FFT spectrum suggesting a possible lifting of the double degeneracy in accord with the helical spin texture at outer and inner Fermi surfaces with opposite chirality predicted by our ab initio calculations. Strikingly, a large antisymmetric magnetoresistance with respect to the applied magnetic fields is uncovered over a wide temperature range in needle crystal of Cd3As2 with its long axis along [112] crystal direction. It reveals a possible contribution of intrinsic anomalous velocity term in the transport equation resulting from a unique 3D Rashba-like spin splitted bands that can be obtained from band calculations with the inclusion of Cd antisite defects.

14.
Phys Rev Lett ; 116(10): 107203, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-27015508

ABSTRACT

PbCuTe_{2}O_{6} is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu^{2+} ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T_{1} NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.

15.
Genes Immun ; 17(3): 179-86, 2016 04.
Article in English | MEDLINE | ID: mdl-26890332

ABSTRACT

The T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) is selectively expressed on terminally differentiated T helper 1 (Th1) cells and acts as a negative regulator that terminates Th1 responses. The dysregulation of TIM-3 expression on T cells is associated with several autoimmune phenotypes and with chronic viral infections; however, the mechanism of this regulation is unclear. In this study, we investigated the effect of DNA methylation on the expression of TIM-3. By analyzing the sequences of TIM-3 promoter regions in human and mouse, we identified a CpG island within the TIM-3 promoter and demonstrated that the promoter activity was controlled by DNA methylation. Furthermore, treatment with 5-aza-2'-deoxycytidine enhanced TIM-3 expression on mouse primary CD4(+) T cells under Th0-, Th1- or Th2-polarizing conditions. Finally, pyrosequencing analysis revealed that the methylation level of the TIM-3 promoter gradually decreased after each round of T-cell polarization, and this decrease was inversely correlated with TIM-3 expression. These data suggest that the DNA methylation of the TIM-3 promoter cooperates with lineage-specific transcription factors in the control of Th-cell development. In conclusion, DNA methylation-based regulation of TIM-3 may provide novel insights into understanding the dysregulation of TIM-3 expression under pathogenic conditions.


Subject(s)
DNA Methylation , Hepatitis A Virus Cellular Receptor 2/genetics , Promoter Regions, Genetic , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Cell Lineage , CpG Islands , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Jurkat Cells , Mice , T-Lymphocytes, Helper-Inducer/cytology , Transcription Factors/metabolism
16.
J Phys Condens Matter ; 28(2): 026004, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26683210

ABSTRACT

Mn vacancy defect and grain size are shown to modify the magnetic phase diagram of MnSi significantly, especially near the critical regime of A-phase (skyrmion lattice) formation and the helimagnetic phase transition. Crystals grown using controlled nonstoichiometric initial precursors creates both grain boundaries and intrinsic Mn vacancy defect of various levels in MnSi. The results of combined transport, specific heat, and AC spin susceptibility measurements are compared for MnSi single crystal samples of various manganese deficiency levels and grain sizes. The finite-size effect and Mn vacancy level dependent helical phase transition temperature T(c) have been identified and verified. The stability of A-phase in H-T phase space has been examined through AC spin susceptibility data analysis.

17.
J Phys Condens Matter ; 27(42): 426001, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26436635

ABSTRACT

We investigate the magnetic, thermal, and dielectric properties of SrCuTe2O6, which is isostructural to PbCuTe2O6, a recently found, Cu-based 3D frustrated magnet with a corner-sharing triangular spin network having dominant first and second nearest neighbor (nn) couplings (Koteswararao et al 2014 Phys. Rev. B 90 035141). Although SrCuTe2O6 has a structurally similar spin network, the magnetic data exhibit the characteristic features of a typical quasi-1D magnet, which mainly resulted from the magnetically dominant third nn coupling, uniform chains. The magnetic properties of this system are studied via magnetization (M), heat capacity (C p ), dielectric constant ([Formula: see text]), and measurements along with ab initio band structure calculations. The magnetic susceptibility [Formula: see text] data show a broad maximum at 32 K and the system orders at low temperatures [Formula: see text] K and [Formula: see text] K, respectively. The analysis of the [Formula: see text] data gives an intra-chain coupling, [Formula: see text], to be about ≈ - 42 K with non-negligible frustrated inter-chain couplings ([Formula: see text] and [Formula: see text]). The hopping parameters obtained from the LDA band structure calculations also suggest the presence of coupled uniform chains. The observation of simultaneous anomalies in [Formula: see text] at [Formula: see text] and [Formula: see text] suggests the presence of a magneto-dielectric effect in SrCuTe2O6. A magnetic phase diagram is also built based on the M, C p , and [Formula: see text] results.

18.
J Phys Condens Matter ; 27(45): 456001, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26471799

ABSTRACT

Magnetic, thermodynamic, and dielectric properties of Li2Ni(WO4)2 of S = 1 system have been studied using magnetic susceptibility, specific heat, and dielectric constant measurements. The magnetic orderings can be identified in three stages, including a short range magnetic ordering indicated by the rounded χ(T) peak with maximum at ∼20 K, and signatures of two successful antiferromagnetic long range orderings near T(N1) ~ 18 K and T(N2) ~ 13 K revealed by the d(χ(T)) /d(T) peaks. The successive long range magnetic orderings are related to the quasi triangular symmetry breaking in the ac- and bc-planes and to the change of the dielectric constant, suggesting the presence of spin-phonon coupling. The specific heat and magnetic entropy analysis for Li2Ni(WO4)2 shows the existence of a significant low dimensional magnetic correlations at high temperature and confirms the long range three-dimensional (3D) behavior of magnetic orderings below T(N1) and T(N2).

19.
Sci Rep ; 5: 12966, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26272041

ABSTRACT

The three dimensional (3D) Dirac semimetal is a new quantum state of matter that has attracted much attention recently in physics and material science. Here, we report on the growth of large plate-like single crystals of Cd3As2 in two major orientations by a self-selecting vapor growth (SSVG) method, and the optimum growth conditions have been experimentally determined. The crystalline imperfections and electrical properties of the crystals were examined with transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and transport property measurements. This SSVG method makes it possible to control the as-grown crystal compositions with excess Cd or As leading to mobilities near 5-10(5) cm(2)V(-1)s(-1). Zn-doping can effectively reduce the carrier density to reach the maximum residual resistivity ratio (RRRρ300K/ρ5K) of 7.6. A vacuum-cleaved single crystal has been investigated using angle-resolved photoemission spectroscopy (ARPES) to reveal a single Dirac cone near the center of the surface Brillouin zone with a binding energy of approximately 200 meV.

20.
Phys Rev Lett ; 111(22): 227001, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24329465

ABSTRACT

We present a combined magnetic neutron scattering and muon spin rotation study of the nature of the magnetic and superconducting phases in electronically phase separated La(2-x)Sr(x)CuO(4+y), x=0.04, 0.065, 0.09. For all samples, we find long-range modulated magnetic order below T(N) is approximately equal to Tc=39 K. In sharp contrast to oxygen-stoichiometric La(2-x)Sr(x)CuO(4), we find that the magnetic propagation vector as well as the ordered magnetic moment is independent of Sr content and consistent with that of the "striped" cuprates. Our study provides direct proof that superoxygenation in La(2-x)Sr(x)CuO(4+y) allows the spin stripe ordered phase to emerge and phase separate from superconducting regions with the hallmarks of optimally doped oxygen-stoichiometric La(2-x)Sr(x)CuO(4).

SELECTION OF CITATIONS
SEARCH DETAIL
...