Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 33(27)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35272278

ABSTRACT

In this study, we have investigated the improvements in the performance of an all-solid-state complementary electrochromic device (ECD) by using the proposed high pressure treatment (HPT). The Li:Ta2O5electrolyte layer was recrystallized by the HPT utilizing pressurized CO2gas (∼200 atm) and at low temperature (<60 °C), which enhanced the coloration performance of the WO3/Li:Ta2O5/NiO complementary ECD by ∼20%. The reliability and durability of the ECD were confirmed by long term transmittance retention measurements, which indicated an improvement in the coloration performance by ∼14% upon the release of the bias voltages. The ability of the devices that were fabricated with and without the HPT process to withstand high temperature environments was also verified. In addition, photoluminescence (PL) and transmittance measurements were carried out to examine the effects of the bonding between WO3and NiO. To determine the differences in lithium-ion (Li+) injection, electrical measurements were performed by utilizing varying pulse rising speeds to confirm device characteristics. The materials were characterized in terms of their composition and structure using high-resolution transmission electron microscopy along with energy-dispersive x-ray spectroscopy. Finally, a mechanistic model has been proposed to explain the improved EC characteristics based on the amorphous to crystalline transition accompanying the HPT process.

2.
Nanoscale Res Lett ; 14(1): 375, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31832795

ABSTRACT

In this work, a high-density hydrogen (HDH) treatment is proposed to reduce interface traps and enhance the efficiency of the passivated emitter rear contact (PERC) device. The hydrogen gas is compressed at pressure (~ 70 atm) and relatively low temperature (~ 200 °C) to reduce interface traps without changing any other part of the device's original fabrication process. Fourier-transform infrared spectroscopy (FTIR) confirmed the enhancement of Si-H bonding and secondary-ion mass spectrometry (SIMS) confirmed the SiN/Si interface traps after the HDH treatment. In addition, electrical measurements of conductance-voltage are measured and extracted to verify the interface trap density (Dit). Moreover, short circuit current density (Jsc), series resistance (Rs), and fill factor (F.F.) are analyzed with a simulated light source of 1 kW M-2 global AM1.5 spectrum to confirm the increase in cell efficiency. External quantum efficiency (EQE) is also measured to confirm the enhancement in conversion efficiency between different wavelengths. Finally, a model is proposed to explain the experimental result before and after the treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...